A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES
Abstract
The remarkable increase in per capita power
consumption worldwide has drawn attention towards the
needed growth in renewable energy sector in order to
bridge the gap between overall demand and supply. In this
project various renewable energy sources like solar, wind
and hydro energy are taken into consideration for the load
estimation. Several factors are considered for the making
of dataset related to each energy source which include
environmental factors as well as other supporting factors.
With the collected data, prediction of energy generation is
performed using the machine learning algorithm, Random
Forest. The generation, transmission and distribution of
the energy is achieved through a power grid system which
enables efficient and reliable supply of electrical power
from power plants to various consumers.
Bidding mechanisms are commonly used in renewable
energy markets to allocate and trade energy generated
from renewable sources. Producers, such as solar farms or
wind power facilities, participate in bidding processes to
sell their energy to different distribution centres through
grid. Bids may include details like the quantity of energy,
pricing, and timing of delivery
Keywords:
Renewable energy integration, machine learning algorithms, power spot market bidding, block chain-based energy market, solar energy profilesPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Aadithya Hari Nair, Adithi R Kumar, Aleena Thomas, Jeffy Shiju, Tom Kurian, Dynamic Traffic Light Control: A Novel Approach for Congestion Mitigation and Traffic Optimization , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jibin Jacob, Joel John, John Ashwin Delmon, Farhan Zuhair, Sinciya P.O, LOCAL WANDERER , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Minu Cherian, Elzabeth Bobus, Bala Susan Jacob, M Annapoorna, Ashwin Mathew Zacheria, Empowering Laptop Selection with Natural Language Processing Chatbot and Data Driven Filtering Assistance , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr Anil A R, Amit Sankar Arun, Anandhu Anilkumar, Anandu S Sivan, Anoop Manoharan, DESIGNING OF A VOICE – BASED PROGRAMMING IDE FOR SOURCE CODE GENERATION , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Athira Sankar, Sajishma S R, Alan Raj, Vaishnavi A K, Reshmi S Kaimal, Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- C P Athira, Fathima Sithara P.A, HAND GESTURE BASED HOME AUTOMATION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.
