Intrusion Countermeasure System
Abstract
The project titled "Intrusion Countermeasure
System" presents an innovative solution aimed at
enhancing security measures in restricted areas through
the prevention of unauthorized access and trespassing.
Leveraging cutting-edge technologies such as Intrusion
Countermeasure System and mobile robotics, this system
integrates multiple components to achieve its objective.
Machine learning algorithms, powered by OpenCV, are
utilized for motion capture and face detection, enabling
accurate recognition and response to human presence. On
the hardware front, the system employs Arduino for
robust control, along with motors, motor drivers, and
cameras to facilitate seamless operations. The integration
of ROS2 SLAM (Simultaneous Localization and Mapping)
and navigation further enhances the system's capabilities,
allowing for real-time mapping and autonomous
navigation within the secured environment. The result is a
comprehensive defence system that not only identifies
potential intruders but also takes swift and intelligent
action, thereby fortifying security in sensitive areas. This
project exemplifies the potential for advanced technology
to redefine security measures and safeguard critical
locations effectively.
Keywords:
Intrusion Countermeasure System, Machine Learning, Mobile Robotics, Open CVPublished
Issue
Section
License
Copyright (c) 2025 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Amrutha Priya C B, Nitha C Velayudhan, Arjun K S, Aleena Francis, Divya P S, AI Enabled Robot for Data Collection in Unreachable and Extreme Environment , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Arun T S, Bhavana Rajesh Pillai, Devapriya L, Javaid Iqbal, Sreekala K S, Automated Hydroponics for Agricultural Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Mekha Jose, Avin Joshy, Abishek R Paleri, Athul Mohan, Ali Jasim R M, A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr Anil A R, Amit Sankar Arun, Anandhu Anilkumar, Anandu S Sivan, Anoop Manoharan, DESIGNING OF A VOICE – BASED PROGRAMMING IDE FOR SOURCE CODE GENERATION , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- P Sathya Narayan, Safad Ismail, Developing an Empathetic Interaction Model for Elderly in Pandemics , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Akhil Mohan , E R Sreema, Leshma Mohandas , P U Prabath, Saeedh Mohammed , Virtual Air Canvas , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr nitha C Vellayudan, Akshay K.P, Muhamed Adhil P.M, C.A Sivasankar , Crop Yield and Price Prediction , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.