Intrusion Countermeasure System
Abstract
The project titled "Intrusion Countermeasure
System" presents an innovative solution aimed at
enhancing security measures in restricted areas through
the prevention of unauthorized access and trespassing.
Leveraging cutting-edge technologies such as Intrusion
Countermeasure System and mobile robotics, this system
integrates multiple components to achieve its objective.
Machine learning algorithms, powered by OpenCV, are
utilized for motion capture and face detection, enabling
accurate recognition and response to human presence. On
the hardware front, the system employs Arduino for
robust control, along with motors, motor drivers, and
cameras to facilitate seamless operations. The integration
of ROS2 SLAM (Simultaneous Localization and Mapping)
and navigation further enhances the system's capabilities,
allowing for real-time mapping and autonomous
navigation within the secured environment. The result is a
comprehensive defence system that not only identifies
potential intruders but also takes swift and intelligent
action, thereby fortifying security in sensitive areas. This
project exemplifies the potential for advanced technology
to redefine security measures and safeguard critical
locations effectively.
Keywords:
Intrusion Countermeasure System, Machine Learning, Mobile Robotics, Open CVPublished
Issue
Section
License
Copyright (c) 2025 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Honey Thomas, Linna Benny, Saya Nezrin, Navya Neethi S, Niya Joseph, Smart Communication Software for the Hearing Impaired Using Artificial Intelligence , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Lida K Kuriakose, Overview of Lip Reading Methods: Issues, Current Developments, and Future Prospects , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- ANU ROSE JOY, Christeena Antony, Dona Mariyam John, Anuja Sara Mathew, Christeen Mareia Paul, UnLocking Emotion Recognition in ASD Children: Analyzing Facial Expressions , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Prinu Vinod Nair, Rohit Subash Nair, Samuel Thomas Mathew S, Ansamol Varghese, Weed detection using YOLOv3 and elimination using organic weedicides with Live feed on Web App , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- P Sathya Narayan, Safad Ismail, Developing an Empathetic Interaction Model for Elderly in Pandemics , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr Anil A R, Amit Sankar Arun, Anandhu Anilkumar, Anandu S Sivan, Anoop Manoharan, DESIGNING OF A VOICE – BASED PROGRAMMING IDE FOR SOURCE CODE GENERATION , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.