Revolutionizing Nutritional Management Through Food Scanning And Object Detection: A New Android Application For Adults
Abstract
The proliferation of mobile technology has led to the development of numerous applications aimed at promoting a healthy lifestyle, such as monitoring food intake and providing suggestions for a healthy diet. However, many of these apps require significant time and effort to manually input food items. To address this issue, we present the development of a new machine learning-based Android application that simplifies food management for adults, especially those in rural environments or with limited technical knowledge. The proposed application uses AWS Rekognition to scan food items and obtain nutritional information, such as the percentage of diabetes, cholesterol, and other key factors affecting health. The app also utilizes image recognition to detect fruits and vegetables, providing their nutritional contents. Additionally, for packed food items, the app scans the ingredients list to predict vital information
regarding the user’s health. The machine learning algorithm in the application helps in improving the accuracy of the scanned information and provides better nutritional recommendations. The application is designed to have a simple and user-friendly
interface, providing a convenient solution for managing food intake.
Keywords:
diet, scan, detection, machine learningPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Anna Jose, Anit Devesiya, Albin Scaria Sabu, Anand Baby John, Prof.Maria Yesudas, AMIGO APPLICATION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- M Midhun, Sangeetha Tony, Tibin Abraham, B Vyshnav, ACCIDENT DETECTION USING VIDEO SURVEILLANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Sinciya P.O, Aaron Varughese Bino, Anamin Fathima Anish, Aathira Krishna, Dona Maria Joseph, Unveiling Stress through Facial Expressions: A Literature Review on Detection Methods , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Amrutha Priya C B, Nitha C Velayudhan, Arjun K S, Aleena Francis, Divya P S, AI Enabled Robot for Data Collection in Unreachable and Extreme Environment , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Alan Joseph, A K Abhinay, Dr. Gee Varghese Titus, Anagha Tess B, Adham Saheer, Fabeela Ali Rawther, Comparative Analysis of Text Classification Models for Offensive Language Detection on Social Media Platforms , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anna Thomas, Esther Thankam Mathew, Anitta Emmanuel, Noel Thomas, Auxilia: Assistive Learning Tool for Children with Down Syndrome , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- R Karthika, Maria Toms, S R Aadrash, P U Prabath, InsightAI: Bridging Natural Language and Data Analytics , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Abhijith J, Athul Krishna S, Amarthyag P, Angela Rose Baby, Mekha Jose, CATARACT DETECTION USING DIGITAL CAMERA IMAGES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adith Ajay, Automatic Fall Detection And Alert System For Home Safety , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.