Revolutionizing Nutritional Management Through Food Scanning And Object Detection: A New Android Application For Adults
Abstract
The proliferation of mobile technology has led to the development of numerous applications aimed at promoting a healthy lifestyle, such as monitoring food intake and providing suggestions for a healthy diet. However, many of these apps require significant time and effort to manually input food items. To address this issue, we present the development of a new machine learning-based Android application that simplifies food management for adults, especially those in rural environments or with limited technical knowledge. The proposed application uses AWS Rekognition to scan food items and obtain nutritional information, such as the percentage of diabetes, cholesterol, and other key factors affecting health. The app also utilizes image recognition to detect fruits and vegetables, providing their nutritional contents. Additionally, for packed food items, the app scans the ingredients list to predict vital information
regarding the user’s health. The machine learning algorithm in the application helps in improving the accuracy of the scanned information and provides better nutritional recommendations. The application is designed to have a simple and user-friendly
interface, providing a convenient solution for managing food intake.
Keywords:
diet, scan, detection, machine learningPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Arun Robin, Tijo Thomas Titus, Ms. Minu Cherian, Improved Handwritten Digit Recognition Using Deep Learning Technique , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Anishamol Abraham, Elbin Santhosh, Diliya Saji, Edwin Roy, Catherine Achu Punnoose, AI Revolutionizing Fashion: A Review of Algorithms and Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Amina Manaf , Ance Maria Joseph , Angel Joy , Anjaly Anilkumar , K S Rekha, Driver Drowsiness Detection Using Python , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jyothis Joseph , Ajay K Baiju, Ganga Binukumar, Akshara Manoj, Sandra Elizabeth Rony, A Crowd Monitoring and Real-Time Tracking System using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr.Sinciya P.O , Ameena Ismail, Christin Abu, Don P Mathew, Gokul Krishnan G , Enhancing LSD Image Classification Techniques A Literature Review on Classification Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Khalid Hareef, Neenu, M N Sulthana , Nesmi Siddique, Number Plate Detection in Fog and Haze , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Muhammed Saalim O.S, Fathima Parvin M.A, Albiya Hameed, Hiba Fathima T.S, Amritha Soloman, AGRISEN Precise irrigation System and Smart health monitoring system , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anna N Kurian, Amitha Anil, Andriya Raju, Ancita J Feriah, Aiswarya Lakshmi Navami, Deep Learning based Multimodal Brain MRI Tumor Classification as a Diagnostic Tool to Benefit Clinical Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.