A Literature Review on IMAGE FORGERY DETECTION
Abstract
Taking pictures has grown in popularity recently as cameras are so widely accessible. Since they are so rich in information, images are crucial to daily life.Pictures frequently need to be enhanced in order to gain more information due to their wealth of data. Although there are many technologies available to enhance picture quality, they are also regularly used to alter photos, which leads to the dissemination of false information. This makes picture forgeries more severe and frequent, which is now a major cause of worry. To identify fake images, several conventional methods have been developed over time. CNNs have drawn a lot of interest recently, and CNN has also had an impact on the area of picture forgery detection. In recent years, CNNs have gained great attention, and CNN
has also affected the field of picture fraud detection. The majority of CNN-based picture forgery detection methods, however, are
only capable of spotting one kind of fraud (either image splicing or copy-move). Hence, a novel method that can quickly and precisely identify any hidden forgeries in a picture is needed. In the context of double image compression, the suggested system is a strong deep learning-based system that is introduced for detecting picture forgeries. The suggested model is trained using the variation between the original and recompressed versions of a picture.
Keywords:
IOT, Sensors, Image Processsing, Microcontroller, GSM ModulePublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Khalid Hareef, Neenu, M N Sulthana , Nesmi Siddique, Number Plate Detection in Fog and Haze , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- S Sreejith, Akshara Santhosh, Ardra Haridas, S Jayakrishnan, Ojus Thomas Lee, Chitra Merin Varghese, BrailE- Reading Device for the Deaf and Blind in Real Time Speech , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Abhijith J, Athul Krishna S, Amarthyag P, Angela Rose Baby, Mekha Jose, CATARACT DETECTION USING DIGITAL CAMERA IMAGES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adona Shibu, Aarunya Retheep, Albin Joseph, Ali Jasim, Adona Shibu , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ann Mary Babu, Anto K Thomas, Aswin Sebastian, Beffin K Lalu, Dr Jacob John, Assistive Technology For Deaf And Dumb , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Elana Martin, Feba Ann Joseph, Ajisha Elizabeth Abraham, Christia Sunny Thomas, MediConnect - Remote Patient Health Monitoring , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Leo Jose, Navin Shibu George, Raju, Safa Haroon, Bini M Issac, Wearable Technology for Driver Monitoring and Health Management: A Comprehensive Survey , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Albin Thomas Lalu, Resmara S, Alen A Thankachen, Sneha Priya Sebastian, Dany Jennez , Lirin Blesson, Kesia Sunny, Fault Detection of Transmission Lines Using Unmanned Aerial Vehicle (UAV) , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.