A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning
Abstract
This paper explores the application of deep learning and image processing techniques for cattle disease detection and pose estimation, drawing insights from various research papers. The use of wearable sensors embedded in collars emerges as a prominent method for monitoring cattle behavior and health. These sensors, particularly accelerometers, effectively capture movement data, facilitating the identification of behaviors like grazing, resting, walking, and ruminating. Several studies utilize supervised machine learning algorithms such as Random Forest, Decision Trees, and Linear Discriminant Analysis to classify these behaviors with high accuracy. Further, deep learning models, especially Convolutional Neural Networks (CNNs), demonstrate remarkable capabilities in detecting specific cattle diseases.YOLOv5, known for its speed and accuracy, proves effective in cattle detection. Image preprocessing techniques, including grayscale conversion, noise removal, and data augmentation, enhance the accuracy and robustness of these models. Additionally, pose estimation techniques like OpenPifPaf, combined with angle calculations between joints, provide valuable insights into cattle posture and aid in the early detection of lameness. The integration of these advanced technologies presents a significant opportunity to advance precision livestock farming practices. Early disease detection and efficient behavior monitoring can contribute to improved animal welfare, optimized farm management, and enhanced productivity in the cattle industry.
Keywords:
Artificial Intelligence, Feature Extraction, Deep Learning, CNNPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Fabeela Ali Rawther, Abhinay A K, Anagha Tess B, Alan Joseph, Adham Saheer, Survey of Machine Learning and Deep Learning Approaches for Automated Hate Speech Detection and Sentiment Analysis in Multilingual Contexts , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Amal P Varghese, Simy Mary Kurian, Advancements in ECG Heartbeat Classification: A Comprehensive Review of Deep Learning Approaches and Imbalanced Data Solutions , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Dipjyoti Deka, Rituparna Seal, Shubham Banik, Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Arun Robin, Tijo Thomas Titus, Ms. Minu Cherian, Improved Handwritten Digit Recognition Using Deep Learning Technique , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Ansamol Varghese, Anandhu Anoj, Emil Thomas, Deepta K Sunny, Angel Thomas, TrueNews: AI Powered Detection of Manipulated Text and Images , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- M Sreedharsh, S Saurav, Albin Joseph, Sravan Chandran , Lida K Kuriakose, Childhood Epilepsy Syndrome Classification through a Deep Learning Network with Clinical History Integration , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dona S Plavelil, A Devanandha, Haritha H Kurupp, Jissin k Jose, DETECTION OF ALZHEIMER’S DISEASE AND ASSISTANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sandra Saji, Melbin Mathew, Angel Mariya S, Amrutha Mugesh, Jincy Lukose, MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.

