A Hybrid SQL Query Execution Model for JSON Data: Balancing Resource Efficiency and Analytical Performance
Abstract
The rapid growth of unstructured and semi- structured data has necessitated the development of efficient query execution frameworks capable of handling complex data formats such as JSON. This paper presents a hybrid framework that intelligently leverages Apache Drill and DuckDB to optimize SQL query execution on JSON data. Our framework dynamically selects the appropriate query engine based on dataset size, available memory, and the nature of the SQL workload, effectively balancing memory efficiency with analytical performance. We explore the advantages of using Apache Drill for complex joins and nested JSON data, while DuckDB is employed for analytical queries when sufficient memory resources are available. Experimental results demonstrate the framework’s capability to reduce execution time and enhance resource utilization across various workloads. By providing insights into hybrid query processing techniques, this work aims to contribute to the efficient management of JSON
data in modern data-driven applications.
Keywords:
Hybrid Framework, SQL Queries, JSON Data, Apache Drill, DuckDB, Query Execution, Memory Utilization, Analytical WorkloadPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Elana Martin, Feba Ann Joseph, Ajisha Elizabeth Abraham, Christia Sunny Thomas, MediConnect - Remote Patient Health Monitoring , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Akhil Mohan , E R Sreema, Leshma Mohandas , P U Prabath, Saeedh Mohammed , Virtual Air Canvas , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Honey Joseph, A Survey and Analysis on Predicting Heart Disease Using Machine Learning Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Fabeela Ali Rawther, Akhil P Dominic, Alan James, Christy Chacko, Elena Maria Varghese, Early Detection of Attention Deficiency Using ML , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Rema M K, Muhamed Ajmal K R, Deepak T G, Roshini M, Muhammed Bazir, INTERACTIVE TOY , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Leo Jose, Navin Shibu George, Raju, Safa Haroon, Bini M Issac, Wearable Technology for Driver Monitoring and Health Management: A Comprehensive Survey , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr.Sinciya P O, Evelyn Susan Jacob, Steve Alex, Cybersecurity Challenges and Solutions in Edge Computing for IoT , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anu Joseph, Arya Harish, Anik Tom Saji, Arya Manoj, Aju Mathew George, An In- Depth Investigation of the Emerging Role of Electrocoagulation in Cutting Edge Wastewater Treatment Practices , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.