Deep Learning based Multimodal Brain MRI Tumor Classification as a Diagnostic Tool to Benefit Clinical Applications
Abstract
Brain cancer is one of the most fatal types of disease, which is caused by an abnormally growing mass of defective brain tissue. Generally, brain cancer can be divided into benign and malignant, however, based on the World Health Organization, it can also be divided into grade I, II, III, and IV tumors. Magnetic Resonance Imaging (MRI) has become a crucial tool in the diagnosis and treatment of brain tumors. However, accurately classifying brain tumor images from MRI scans remains a challenging task due to the complexity and heterogeneity of tumor characteristics. This paper presents a deep learning based classification method for brain tumor classification .The model uses DenseNet101 and EfiiicentNetB3 and achieved 90 percent accuracy using dataset from the kaggle..
Keywords:
Glioma, Brain Tumors, Classification, EfficientNet, MRIPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Sandra Raju, Dr S Sruthy, A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Aleena Joseph, Diya Paramesh G, Elza Mary Thomas, Gayathri V, Anu V Kottath, A Review on Comparison of VGG-16 and DenseNet algorithms for analysing brain tumor in MRI image , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anishamol Abraham, Elbin Santhosh, Diliya Saji, Edwin Roy, Catherine Achu Punnoose, AI Revolutionizing Fashion: A Review of Algorithms and Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Ryan Leo , Mathews P Jose, Eirene Nikky , Lloyd Micheal, Chinnu Edwin A , Controlling a Mini Game using a Brain-Computer Interface , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nivedh Mohanan, Subhash P C, Subin K S, Subin V Ninan, Elisabeth Thomas, S N Kumar, A Qualitative Study on Segmentation of MR Images of Brain for Neuro Disorder Analysis , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Alan Joseph, A K Abhinay, Dr. Gee Varghese Titus, Anagha Tess B, Adham Saheer, Fabeela Ali Rawther, Comparative Analysis of Text Classification Models for Offensive Language Detection on Social Media Platforms , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- S Adithyakrishnan, U Anjukrishna, Rohith Manuel Philip, P Careena, A Comprehensive Review on Diagnosis and Classification of Various Respiratory Diseases , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.