Classification of Lung Cancer Subtypes Using Deep Learning Model
Abstract
Cancer is a leading cause of death worldwide, af- fecting millions of people each year. There is an urgent need for improved cancer detection, diagnosis, and treatment methods. Histopathological examination, involving the microscopic analysis of tissue samples, is the gold standard for cancer diagnosis. However, this process can be time-consuming and subjective, relying heavily on pathologists’ expertise. Deep learning models, particularly convolutional neural networks (CNNs), excel at image analysis and pattern recognition. CNNs can be trained on large datasets of histopathological images to learn the complex features associated with different cancer types. Once trained, these models can automate cancer detection, classify cancer subtypes, segment tumor regions and predict treatment response. Deep learning models, particularly convolutional neural networks (CNNs), have successfully classified various cancer subtypes. For instance, studies have shown the effectiveness of CNN, CNN Gradient Descent, VGG16, VGG-19, Inception V3, and Resnet-50 in accurately classifying lung cancer subtypes from histopathological images. Transfer learning, a technique that adapts pre-trained CNN models to new tasks, has further enhanced classification accuracy, especially when working with limited medical image datasets. The ability to accurately classify cancer subtypes using deep learning can aid pathologists in making more informed diagnoses and guide treatment strategies. Continued research and development in this field promise to revolutionize cancer diagnosis and prognosis, leading to more personalized and effective treatment strategies
Keywords:
Histopathological Images, EfficientNet, Convolutional Neural Networks (CNNs), Deep LearningPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Anishamol Abraham, Elbin Santhosh, Diliya Saji, Edwin Roy, Catherine Achu Punnoose, AI Revolutionizing Fashion: A Review of Algorithms and Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Betzy Babu Thoppil, Anugrah Premachandran, Annapoorna M, Ashwin Mathew Zachariah, Bala Susan Jacob, Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anna N Kurian, Amitha Anil, Andriya Raju, Ancita J Feriah, Aiswarya Lakshmi Navami, Deep Learning based Multimodal Brain MRI Tumor Classification as a Diagnostic Tool to Benefit Clinical Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Mekha Jose, Jocelyn Anthony, Jose V Joseph, Joshwa Thomas, Sharon Baby Thomas, A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Ansamol Varghese, Anandhu Anoj, Emil Thomas, Deepta K Sunny, Angel Thomas, TrueNews: AI Powered Detection of Manipulated Text and Images , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Nikita Niteen , Simy Mary Kurian, Exploring Explainable AI, Security and Beyond : A Comprehensive Review , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Honey Thomas, Linna Benny, Saya Nezrin, Navya Neethi S, Niya Joseph, AI-Powered Assistive Communication Software for the Deaf , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Kaveri S, Pooja Satheesh, Kesiya Susan John, Reubel K Wilson, Dr. Jacob John, Predictive Maintenance of Machines Using IoT and Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Amal P Varghese , Juby Mathew, Advancements in Vehicular Communication Systems: Integrating IoT, Edge Cloud Computing, Microgrid Energy Management, Blockchain, AI, and Simulation Tools , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
You may also start an advanced similarity search for this article.