Classification of Lung Cancer Subtypes Using Deep Learning Model
Abstract
Cancer is a leading cause of death worldwide, af- fecting millions of people each year. There is an urgent need for improved cancer detection, diagnosis, and treatment methods. Histopathological examination, involving the microscopic analysis of tissue samples, is the gold standard for cancer diagnosis. However, this process can be time-consuming and subjective, relying heavily on pathologists’ expertise. Deep learning models, particularly convolutional neural networks (CNNs), excel at image analysis and pattern recognition. CNNs can be trained on large datasets of histopathological images to learn the complex features associated with different cancer types. Once trained, these models can automate cancer detection, classify cancer subtypes, segment tumor regions and predict treatment response. Deep learning models, particularly convolutional neural networks (CNNs), have successfully classified various cancer subtypes. For instance, studies have shown the effectiveness of CNN, CNN Gradient Descent, VGG16, VGG-19, Inception V3, and Resnet-50 in accurately classifying lung cancer subtypes from histopathological images. Transfer learning, a technique that adapts pre-trained CNN models to new tasks, has further enhanced classification accuracy, especially when working with limited medical image datasets. The ability to accurately classify cancer subtypes using deep learning can aid pathologists in making more informed diagnoses and guide treatment strategies. Continued research and development in this field promise to revolutionize cancer diagnosis and prognosis, leading to more personalized and effective treatment strategies
Keywords:
Histopathological Images, EfficientNet, Convolutional Neural Networks (CNNs), Deep LearningPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Syam Gopi, Evelyn Susan Jacob, Joel John, Raynell Rajeev, Steve Alex, Survey on AI Malware Detection Methods and Cybersecurity Education , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Richa Maria Biju, Merwin Maria Antony, Mishal Rose Thankachan, Joshua John Sajit, Bini M Issac, Enhancing Image Forgery Detection with Multi-Modal Deep Learning and Statistical Methods , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Fabeela Ali Rawther, Abhinay A K, Anagha Tess B, Alan Joseph, Adham Saheer, Survey of Machine Learning and Deep Learning Approaches for Automated Hate Speech Detection and Sentiment Analysis in Multilingual Contexts , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Sebastian Biju, Samuel Michael, Thomas Mathew Jose, Mathew Abraham, Minu Cherian, A Review of Machine Learning Approaches for Canine Skin Disease Detection Using Image Processing Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Mekha Jose, Avin Joshy, Abishek R Paleri, Athul Mohan, Ali Jasim R M, A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Arun Robin, Tijo Thomas Titus, Ms. Minu Cherian, Improved Handwritten Digit Recognition Using Deep Learning Technique , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- George P Kurias, Gokul Krishna AU, Jifith Joseph, Sharunmon R, Linsa Mathew, A Review of Methodologies for Detecting Missing and Wanted People Using Machine Learning and Video Surveillance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Amal P Varghese, Simy Mary Kurian, Advancements in ECG Heartbeat Classification: A Comprehensive Review of Deep Learning Approaches and Imbalanced Data Solutions , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
You may also start an advanced similarity search for this article.