A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing
Abstract
Pothole detection is crucial for road safety and maintenance, driving research towards automated and efficient detection systems. Traditional methods present limitations: public reporting, while cost-effective, relies on citizen participation and lacks real-time information; vibration-based methods, using accelerometers to detect vehicle vibrations, require driving over potholes. Image/video processing techniques offer a proactive approach by analysing visual data to identify potholes. These methods often leverage computer vision algorithms, 3D scene reconstruction, and machine learning strategies for enhanced accuracy. Researchers are exploring deep learning models like Convolutional Neural Networks (CNNs) and YOLOv2 to im- prove real-time pothole detection accuracy and efficiency. These advancements, including stereo vision-based systems with high detection rates and pixel-level accuracy, contribute to timely pothole detection and repair, ultimately improving road safety.
Keywords:
simple linear iterative clustering, superpixel, DCNN, 2D image analysis, adaptive threshold- ing, traffic sign recognition, SegCrackNet, visual odometryPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Anna N Kurian, Amitha Anil, Andriya Raju, Ancita J Feriah, Aiswarya Lakshmi Navami, Deep Learning based Multimodal Brain MRI Tumor Classification as a Diagnostic Tool to Benefit Clinical Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.