A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing
Abstract
Pothole detection is crucial for road safety and maintenance, driving research towards automated and efficient detection systems. Traditional methods present limitations: public reporting, while cost-effective, relies on citizen participation and lacks real-time information; vibration-based methods, using accelerometers to detect vehicle vibrations, require driving over potholes. Image/video processing techniques offer a proactive approach by analysing visual data to identify potholes. These methods often leverage computer vision algorithms, 3D scene reconstruction, and machine learning strategies for enhanced accuracy. Researchers are exploring deep learning models like Convolutional Neural Networks (CNNs) and YOLOv2 to im- prove real-time pothole detection accuracy and efficiency. These advancements, including stereo vision-based systems with high detection rates and pixel-level accuracy, contribute to timely pothole detection and repair, ultimately improving road safety.
Keywords:
simple linear iterative clustering, superpixel, DCNN, 2D image analysis, adaptive threshold- ing, traffic sign recognition, SegCrackNet, visual odometryPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- S Sreejith, Akshara Santhosh, Ardra Haridas, S Jayakrishnan, Ojus Thomas Lee, Chitra Merin Varghese, BrailE- Reading Device for the Deaf and Blind in Real Time Speech , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Abhijith J, Athul Krishna S, Amarthyag P, Angela Rose Baby, Mekha Jose, CATARACT DETECTION USING DIGITAL CAMERA IMAGES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Naveen Philip Abraham, Joppen George, Kevin Sajan, Jonathan Chandy, Jonathan Chandy, Bini M. Issac, Advancements in Assistive Technologies: Enhancing Independence and Accessibility for the Visually Impaired , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- P Sathya Narayan, Safad Ismail, Developing an Empathetic Interaction Model for Elderly in Pandemics , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Sinciya P.O , Ameena Ismail, Christin Abu, Don P Mathew, Gokul Krishnan G , Enhancing LSD Image Classification Techniques A Literature Review on Classification Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Remya K R, Sudhama Swaminathan R, Vishnu Sudheer, Vishnukant PK, Nevin Nelson M, Automated Voice-Controlled PowerPoint Presentation Generation System from Voice/Text Prompts , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Mekha Jose, Jocelyn Anthony, Jose V Joseph, Joshwa Thomas, Sharon Baby Thomas, A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Athulya Anilkumar, Abhinav V V, Aneeta Shajan, Anjana S Nair, Bini M Issac, R Neenu, Image Descriptor For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.