Improved Handwritten Digit Recognition Using Deep Learning Technique
Abstract
Handwritten digit recognition (HDR) is a fascinating field of research with practical applications in various domains. Imagine automatically processing checks, deciphering handwritten notes, or interacting with devices using intuitive scribbles - this is the potential of HDR.HDR tasks a computer with understanding the nuances of human handwriting, a seemingly simple yet surprisingly complex endeavor. Unlike standardized fonts, individual handwriting styles exhibit unique characteristics, making recognition a challenging feat.Variations in pressure, slant, size, and even individual loopsand strokes all contribute to the individuality of handwritten digits. Despite these challenges, HDR research continues to evolve, with deep learning techniques playing a crucial role
in recent advancements. This paper explores the state-of-theart in deep learning-based HDR and proposes an innovative approach to address the aforementioned challenges. In this Paper, to evaluate CNN’s performance, we used the MNIST dataset, which contains 70,000 images of handwritten digits. Achieves 98.2% accuracy for handwritten digit. And where 40 of the total images were used to test the data set
Keywords:
HanHandwritten digit recognition, Convolution Neural Networks (CNN), MNIST dataset, Pytorch, DeepLearningPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- S Sreejith, Akshara Santhosh, Ardra Haridas, S Jayakrishnan, Ojus Thomas Lee, Chitra Merin Varghese, BrailE- Reading Device for the Deaf and Blind in Real Time Speech , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amina Manaf , Ance Maria Joseph , Angel Joy , Anjaly Anilkumar , K S Rekha, Driver Drowsiness Detection Using Python , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- ANU ROSE JOY, Christeena Antony, Dona Mariyam John, Anuja Sara Mathew, Christeen Mareia Paul, UnLocking Emotion Recognition in ASD Children: Analyzing Facial Expressions , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr. Indu John, A Adithya, Alwin Rajan, Amal Biso George, Farhaan M Hussain, HEALTH GUARD-A Multiple Disease Prediction Model Based on Machine learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aleena Joseph, Diya Paramesh G, Elza Mary Thomas, Gayathri V, Anu V Kottath, A Review on Comparison of VGG-16 and DenseNet algorithms for analysing brain tumor in MRI image , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- M Manoj, A S Athira, Rishna Ramesh, Sandhra Gopi, Firoz P U, Smart Attend Insights , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Alan Joseph, A K Abhinay, Dr. Gee Varghese Titus, Anagha Tess B, Adham Saheer, Fabeela Ali Rawther, Comparative Analysis of Text Classification Models for Offensive Language Detection on Social Media Platforms , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.