A Survey on Automating Answer-Sheet Evaluation Using AI Techniques
Abstract
The evaluation of answer sheets has traditionally been a time-consuming and subjective process, posing significant challenges in terms of efficiency, scalability, and fairness. With advancements in artificial intelligence (AI) and natural language processing (NLP), automated systems have emerged as promising solutions to these challenges. This study explores two key ap- proaches for implementing automated answer evaluation: BERT- based semantic analysis and large language models (LLMs) powered by prompt engineering. BERT offers deep contextual understanding and precision in grading responses aligned with predefined answer keys, but its reliance on these keys limits its ability to evaluate creative or non-standard answers. In contrast, LLMs such as GPT-4 extend beyond predefined rubrics, utilizing both answer keys and their reasoning capabilities to assess diverse responses accurately. This paper examines the strengths and limitations of these approaches, highlighting their potential for improving grading accuracy, scalability, and adaptability. By integrating advanced OCR technologies for digitizing handwritten responses, these models can provide a holistic evaluation system. The work em- phasizes the need for flexible frameworks that balance precision and creativity, ensuring fair and efficient evaluation in diverse educational contexts. Through this exploration, we aim to guide the development of scalable AI-driven solutions for modern assessment challenges.
Keywords:
Automated grading, Natural Language Processing, AI in education, Answer-key based assessment, Real-time insights, OpenAI APIPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Mrs. Lis Jose, Akhil Lorence, Akhil Manohar, Amal Jose Chacko, Arjun J, Lung Disease Detection From Chest X-ray Images Using Hybrid Machine Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aaron Samuel Mathew, Green Cloud Computing: A Literature Survey , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ann Mary Babu, Anto K Thomas, Aswin Sebastian, Beffin K Lalu, Dr Jacob John, Assistive Technology For Deaf And Dumb , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Layana S Pradeep, Milen Ninan Ittiyeipe, Shahina S, Soumya A S, Ojus Thomas Lee , Gayathri Mohan, A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- M Sreedharsh, S Saurav, Albin Joseph, Sravan Chandran , Lida K Kuriakose, Childhood Epilepsy Syndrome Classification through a Deep Learning Network with Clinical History Integration , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dona S Plavelil, A Devanandha, Haritha H Kurupp, Jissin k Jose, DETECTION OF ALZHEIMER’S DISEASE AND ASSISTANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Julie John, Dr. Michael Puthenthara, Leveraging social media for Environmental Awareness and Solutions: Strategies, Challenges, and Opportunities , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Khalid Hareef, Neenu, M N Sulthana , Nesmi Siddique, Number Plate Detection in Fog and Haze , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sandra Saji, Melbin Mathew, Angel Mariya S, Amrutha Mugesh, Jincy Lukose, MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.