A Survey on Automating Answer-Sheet Evaluation Using AI Techniques
Abstract
The evaluation of answer sheets has traditionally been a time-consuming and subjective process, posing significant challenges in terms of efficiency, scalability, and fairness. With advancements in artificial intelligence (AI) and natural language processing (NLP), automated systems have emerged as promising solutions to these challenges. This study explores two key ap- proaches for implementing automated answer evaluation: BERT- based semantic analysis and large language models (LLMs) powered by prompt engineering. BERT offers deep contextual understanding and precision in grading responses aligned with predefined answer keys, but its reliance on these keys limits its ability to evaluate creative or non-standard answers. In contrast, LLMs such as GPT-4 extend beyond predefined rubrics, utilizing both answer keys and their reasoning capabilities to assess diverse responses accurately. This paper examines the strengths and limitations of these approaches, highlighting their potential for improving grading accuracy, scalability, and adaptability. By integrating advanced OCR technologies for digitizing handwritten responses, these models can provide a holistic evaluation system. The work em- phasizes the need for flexible frameworks that balance precision and creativity, ensuring fair and efficient evaluation in diverse educational contexts. Through this exploration, we aim to guide the development of scalable AI-driven solutions for modern assessment challenges.
Keywords:
Automated grading, Natural Language Processing, AI in education, Answer-key based assessment, Real-time insights, OpenAI APIPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Muhammed Saalim O.S, Fathima Parvin M.A, Albiya Hameed, Hiba Fathima T.S, Amritha Soloman, AGRISEN Precise irrigation System and Smart health monitoring system , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- George P Kurias, Gokul Krishna AU, Jifith Joseph, Sharunmon R, Linsa Mathew, A Review of Methodologies for Detecting Missing and Wanted People Using Machine Learning and Video Surveillance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Goutham P Raj, Gregan George, Hadii Hasan, John Ashwin Delmon, V Pradeeba, COMPREHENSIVE VEHICLE SERVICES & E-COMMERCE PLATFORM WITH PRICE PREDICTION USING ML , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Minu Cherian, Elzabeth Bobus, Bala Susan Jacob, M Annapoorna, Ashwin Mathew Zacheria, Empowering Laptop Selection with Natural Language Processing Chatbot and Data Driven Filtering Assistance , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr Anil A R, Amit Sankar Arun, Anandhu Anilkumar, Anandu S Sivan, Anoop Manoharan, DESIGNING OF A VOICE – BASED PROGRAMMING IDE FOR SOURCE CODE GENERATION , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amrutha Priya C B, Nitha C Velayudhan, Arjun K S, Aleena Francis, Divya P S, AI Enabled Robot for Data Collection in Unreachable and Extreme Environment , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Krishnendu B, Sreelakshmi A, Sumayya Maheen, Zameel Hassan, Honey Joseph, Chatbot-Enabled Symptom Assessment: Revolutionizing Disease Diagnosis and Patient Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ryan Leo , Mathews P Jose, Eirene Nikky , Lloyd Micheal, Chinnu Edwin A , Controlling a Mini Game using a Brain-Computer Interface , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.