A Survey on Automating Answer-Sheet Evaluation Using AI Techniques
Abstract
The evaluation of answer sheets has traditionally been a time-consuming and subjective process, posing significant challenges in terms of efficiency, scalability, and fairness. With advancements in artificial intelligence (AI) and natural language processing (NLP), automated systems have emerged as promising solutions to these challenges. This study explores two key ap- proaches for implementing automated answer evaluation: BERT- based semantic analysis and large language models (LLMs) powered by prompt engineering. BERT offers deep contextual understanding and precision in grading responses aligned with predefined answer keys, but its reliance on these keys limits its ability to evaluate creative or non-standard answers. In contrast, LLMs such as GPT-4 extend beyond predefined rubrics, utilizing both answer keys and their reasoning capabilities to assess diverse responses accurately. This paper examines the strengths and limitations of these approaches, highlighting their potential for improving grading accuracy, scalability, and adaptability. By integrating advanced OCR technologies for digitizing handwritten responses, these models can provide a holistic evaluation system. The work em- phasizes the need for flexible frameworks that balance precision and creativity, ensuring fair and efficient evaluation in diverse educational contexts. Through this exploration, we aim to guide the development of scalable AI-driven solutions for modern assessment challenges.
Keywords:
Automated grading, Natural Language Processing, AI in education, Answer-key based assessment, Real-time insights, OpenAI APIPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- M Manoj, A S Athira, Rishna Ramesh, Sandhra Gopi, Firoz P U, Smart Attend Insights , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adona Shibu, Aarunya Retheep, Albin Joseph, Ali Jasim, Adona Shibu , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Kevin Roy, Lino Shaji, Riya G Johnson, Tince Tomy, Jane George, INTELLIGENT BUDDY , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Athira Sankar, Sajishma S R, Alan Raj, Vaishnavi A K, Reshmi S Kaimal, Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr.Sinciya P.O, Aaron Varughese Bino, Anamin Fathima Anish, Aathira Krishna, Dona Maria Joseph, Unveiling Stress through Facial Expressions: A Literature Review on Detection Methods , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Melvin Tom Varghese, Joseph V S, Kevin Chacko, Johns Benny, Tintu Alphonsa Thomas, Crop Recommendation System using Machine Learning and IoT , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aron Thomas , Abhinav B Kannanthanam , Elzabeth Bobus , Adhil Salim , Elizabeth Jullu , R Neenu, A Hybrid SQL Query Execution Model for JSON Data: Balancing Resource Efficiency and Analytical Performance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Juby Mathew, Maria Jojo, Neha Ann Samson, Noell Biju Michael, Ron T Alumkal, PulseSync: IoT-Enabled Monitoring and Predictive Analytics for Healthcare , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.