Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies
Abstract
—This paper presents a comprehensive analysis of the transformative role of the Internet of Things (IoT) and Machine Learning (ML) in advancing landslide monitoring and prediction for enhanced disaster resilience. Landslides, a prevalent natural hazard, pose substantial risks to life, infrastructure, and socio economic stability, particularly in geographically vulnerable regions. The inherent complexity of landslides, triggered by a confluence of geological, hydrological, and meteorological factors, necessitates advanced monitoring and prediction techniques to mitigate their devastating impacts. Traditional monitoring ap proaches, often constrained by limited spatial coverage, data resolution, and realtime analysis capabilities, struggle to provide timely and accurate warnings. The emergence of IoT and ML offers a paradigm shift in landslide monitoring and prediction, enabling real-time data acquisition, sophisticated analysis, and proactive risk management. IoT-enabled sensor networks, com prising diverse sensors strategically deployed across landslide prone areas, provide continuous data streams on critical param eters such as rainfall intensity and duration, soil moisture content, pore-water pressure, ground vibrations (microseismic activity), and slope deformation. These sensors, often low-cost, low-power, and wirelessly interconnected, transmit data to edge computing devices or cloud-based platforms for real-time processing and analysis. ML algorithms, trained on historical landslide data and associated parameters, play a pivotal role in deciphering complex patterns and anomalies within these large datasets. The sources demonstrate the effectiveness of various ML models, including Random Forest, Support Vector Machines (SVM), K-Nearest Neighbor (KNN), and Convolutional Neural Networks (CNN), in landslide susceptibility mapping, hazard assessment, and early warning system development.
Keywords:
Internet of Things (IoT), Landslide, Machine Learning (ML), Sensor Networks, Early Warning Systems, Data Analysis, Prediction ModelsPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Ansamol Varghese, Milu Mary Jacob, Shilpa Mariam James, Reeba Rebecca Varghese, Vimal sajan George, A Review on Integrating IoT and Robotics for Improved Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Muneebah Mohyiddeen, Sana T.H, Anoodh Hussain, Nandana P Narayanan, Sneha Soman, DGCURE: Model for Detection of Dysgraphia , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anna Jose, Anit Devesiya, Albin Scaria Sabu, Anand Baby John, Prof.Maria Yesudas, AMIGO APPLICATION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Layana S Pradeep, Milen Ninan Ittiyeipe, Shahina S, Soumya A S, Ojus Thomas Lee , Gayathri Mohan, A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jose P Pittappillil, Midhun Mohan, Nimisha Nigel, Nitin Sunil Thomas, Driving Agricultural Innovation: A Review of Technological Advancements in Smart Farming , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Arun T S, Bhavana Rajesh Pillai, Devapriya L, Javaid Iqbal, Sreekala K S, Automated Hydroponics for Agricultural Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Sinciya P.O, Aaron Varughese Bino, Anamin Fathima Anish, Aathira Krishna, Dona Maria Joseph, Unveiling Stress through Facial Expressions: A Literature Review on Detection Methods , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aniruddha Das, Avisikta Modak, The Carbon footprint of Machine Learning Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.