Brain Tumor Detection
Abstract
Human brain is the major controller of the humanoid
system. The abnormal growth and division of cells in the brain lead to a brain tumor, and further growth leads to brain cancer. In the area of human health, Computer Vision plays a significant role, which reduces the human judgment that gives accurate results. CT scans, X-Ray, and MRI scans are the common imaging methods among magnetic resonance imaging (MRI) that are the most reliable
and secure. MRI detects every minute object. Our paper aims to focus
on the discovery of brain cancer using brain MRI. In this study, we performed pre-processing using the Gaussian filter (BF) to remove the noises in an MRI image. This was followed by the binary thresholding and Convolution Neural Network (CNN) segmentation techniques for reliable detection of the tumor region. Training, testing, and validation datasets are used. Based on our machine, we
will predict whether the subject has a brain tumor or not. The resultant outcomes will be examined through various performance examined metrics that include accuracy, sensitivity, and specificity. It is desired that the proposed work would exhibit a more exceptional performance than its counterparts.
Keywords:
Convolution Neural Network, Magnetic Resonance ImagingPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Sebastian Biju, Samuel Michael, Thomas Mathew Jose, Mathew Abraham, Minu Cherian, A Review of Machine Learning Approaches for Canine Skin Disease Detection Using Image Processing Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Muneebah Mohyiddeen, Sana T.H, Anoodh Hussain, Nandana P Narayanan, Sneha Soman, DGCURE: Model for Detection of Dysgraphia , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Prayag Suresh, Sneha Susan Alex, Rojan Varghese, Thomas Zacharias, Shiney Thomas, Survey of Strabismus Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Sinciya P.O, Aaron Varughese Bino, Anamin Fathima Anish, Aathira Krishna, Dona Maria Joseph, Unveiling Stress through Facial Expressions: A Literature Review on Detection Methods , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Arun Robin, Tijo Thomas Titus, Ms. Minu Cherian, Improved Handwritten Digit Recognition Using Deep Learning Technique , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- S Sreejith, Akshara Santhosh, Ardra Haridas, S Jayakrishnan, Ojus Thomas Lee, Chitra Merin Varghese, BrailE- Reading Device for the Deaf and Blind in Real Time Speech , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Fabeela Ali Rawther, Akhil P Dominic, Alan James, Christy Chacko, Elena Maria Varghese, Early Detection of Attention Deficiency Using ML , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amal P Varghese, Simy Mary Kurian, Advancements in ECG Heartbeat Classification: A Comprehensive Review of Deep Learning Approaches and Imbalanced Data Solutions , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
You may also start an advanced similarity search for this article.