A Machine Learning Approach to Fake News Detection
Abstract
In today’s world, social media platforms are important means of information diffusion, and people trust
themwithout questioning their authenticity. Social media is a
majorfactor in propagating fake news. Thus, to mitigate the
conse- quences of fake news, we create an NLP model to
differentiate fake and real news. Here machine learning
algorithms has been used for enhancing fake news detection
performance with NLP. Models trained using max entropy
classifier, where news content is scanned for sentences that could indicate the news is fake based on existing NLP libraries. TF-IDF weighting is used to score certain pieces of text, so that detection is fast on any updates or incoming messages due to its fast computation time and high recall rate (low mistake rate). Here the proposed project’s purpose is to detect fake and misleading news from social media
networks
Keywords:
FakeNews, Recurrent Neural Network, TF-IDF, NLPPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Athulya Anilkumar, Abhinav V V, Aneeta Shajan, Anjana S Nair, Bini M Issac, R Neenu, Image Descriptor For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Muneebah Mohyiddeen, Sana T.H, Anoodh Hussain, Nandana P Narayanan, Sneha Soman, DGCURE: Model for Detection of Dysgraphia , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sebastian Biju, Samuel Michael, Thomas Mathew Jose, Mathew Abraham, Minu Cherian, A Review of Machine Learning Approaches for Canine Skin Disease Detection Using Image Processing Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Sandra Raju, Dr S Sruthy, A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Fabeela Ali Rawther, Akhil P Dominic, Alan James, Christy Chacko, Elena Maria Varghese, Early Detection of Attention Deficiency Using ML , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- S Sreejith, Akshara Santhosh, Ardra Haridas, S Jayakrishnan, Ojus Thomas Lee, Chitra Merin Varghese, BrailE- Reading Device for the Deaf and Blind in Real Time Speech , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Abhijith J, Athul Krishna S, Amarthyag P, Angela Rose Baby, Mekha Jose, CATARACT DETECTION USING DIGITAL CAMERA IMAGES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Prayag Suresh, Sneha Susan Alex, Rojan Varghese, Thomas Zacharias, Shiney Thomas, Survey of Strabismus Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ansamol Varghese, Anandhu Anoj, Emil Thomas, Deepta K Sunny, Angel Thomas, TrueNews: AI Powered Detection of Manipulated Text and Images , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.