A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet
Abstract
A brain tumor occurs when there is an atypical
proliferation of cells in the brain, resulting in abnormal growth. The survival rate of patients with brain tumors is difficult to determine due to their infrequent occurrence and various forms. Magnetic Resonance Imaging (MRI) plays a crucial role in identifying tumor sites, but manual detection is time-consuming and prone to errors. Innovative breakthroughs in artificial intelligence, particularly in the realm of deep learning (DL), have paved the way for the creation of DL models that utilize MRI images for diagnosing brain tumors. In this paper, a three-step preprocessing approach is proposed to enhance the quality of
MRI images, along with a Convolutional Neural Network (CNN) based on the EfficientNet-B0 model for accurate diagnosis of glioma, meningioma, pituitary tumors, and normal images. The model is designed to be computationally efficient, featuring a small number of convolutional and max-pooling layers, which allows for swift training iterations. The model achieved a 95.81% accuracy in detecting glioma, 97.54% accuracy in detecting meningioma, 96.89% accuracy in detecting pituitary tumors, and 97.14% accuracy in detecting normal images when tested on a dataset of 3394 MRI images.
Keywords:
glioma, meningioma, pituitary, AI, Efficient net-B0Published
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Dr.Jacob John, Alan Thomas Shaji, Adithyan Suresh Kumar, Aadhi Lakshmi M R, Alphonsa Francis, An Idea Sharing and Validation Platform Using Blockchain with Delegated Proof of Contribution (DPoC) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Muhammed Saalim O.S, Fathima Parvin M.A, Albiya Hameed, Hiba Fathima T.S, Amritha Soloman, AGRISEN Precise irrigation System and Smart health monitoring system , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jyothis Joseph, Angeetha Raju, Aparna Santhosh, Ashitha Jenish, K S Minu, Survey on Fake Profile Detection in Social Media , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amal P Varghese , Juby Mathew, Advancements in Vehicular Communication Systems: Integrating IoT, Edge Cloud Computing, Microgrid Energy Management, Blockchain, AI, and Simulation Tools , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Aiman Shahul, L Pavithra, Eldhose KV, S Thasni, Dany Jennez, S Resmara, Sand Battery Technology: A Promising Solution for Renewable Energy Storage , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Adith Ajay, Automatic Fall Detection And Alert System For Home Safety , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ankith Issac Dominic, Meera Johnson, Jaida Fathima, Alaina Benny, Amritha Soloman, PARK-EZE: An IoT based Smart Parking System using DLSTM Prediction , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jefrin Siby Mathew, Joyal Joseph, Roshik George, Tinu Rose Thottungal , Honey Joseph, Multiple Disease Detection using Machine Learning , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.