A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet
Abstract
A brain tumor occurs when there is an atypical
proliferation of cells in the brain, resulting in abnormal growth. The survival rate of patients with brain tumors is difficult to determine due to their infrequent occurrence and various forms. Magnetic Resonance Imaging (MRI) plays a crucial role in identifying tumor sites, but manual detection is time-consuming and prone to errors. Innovative breakthroughs in artificial intelligence, particularly in the realm of deep learning (DL), have paved the way for the creation of DL models that utilize MRI images for diagnosing brain tumors. In this paper, a three-step preprocessing approach is proposed to enhance the quality of
MRI images, along with a Convolutional Neural Network (CNN) based on the EfficientNet-B0 model for accurate diagnosis of glioma, meningioma, pituitary tumors, and normal images. The model is designed to be computationally efficient, featuring a small number of convolutional and max-pooling layers, which allows for swift training iterations. The model achieved a 95.81% accuracy in detecting glioma, 97.54% accuracy in detecting meningioma, 96.89% accuracy in detecting pituitary tumors, and 97.14% accuracy in detecting normal images when tested on a dataset of 3394 MRI images.
Keywords:
glioma, meningioma, pituitary, AI, Efficient net-B0Published
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Nivedh Mohanan, Subhash P C, Subin K S, Subin V Ninan, Elisabeth Thomas, S N Kumar, A Qualitative Study on Segmentation of MR Images of Brain for Neuro Disorder Analysis , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anishamol Abraham, Elbin Santhosh, Diliya Saji, Edwin Roy, Catherine Achu Punnoose, AI Revolutionizing Fashion: A Review of Algorithms and Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Aleena Joseph, Diya Paramesh G, Elza Mary Thomas, Gayathri V, Anu V Kottath, A Review on Comparison of VGG-16 and DenseNet algorithms for analysing brain tumor in MRI image , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Honey Thomas, Linna Benny, Saya Nezrin, Navya Neethi S, Niya Joseph, Smart Communication Software for the Hearing Impaired Using Artificial Intelligence , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Arun T S, Bhavana Rajesh Pillai, Devapriya L, Javaid Iqbal, Sreekala K S, Automated Hydroponics for Agricultural Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- An Mariya Deve M D, Aswani Unni, Bhagya S, Abin Joseph, Dr. Aju Mathew George, Innovative Biochar Applications for Sustainable Water Purification , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Akhil Mathew Mohan, Alan Maria George, Arathy Baby, Gopika S, Syam Gopi, Abubeker K.M, Real-time Air Quality Index Monitoring and Alert System using IoT Technology , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- P Sathya Narayan, Safad Ismail, Developing an Empathetic Interaction Model for Elderly in Pandemics , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.