Image Descriptor For Visually Impaired
Abstract
An image descriptor is a system that generates a voice description of the context of an image. The initial step involves the generation of a textual description of the image. It entails analyzing an image with machine learning algorithms and producing a description of the image in natural language. The obtained captions are then converted to voice output. Systems for captioning images can be used for a variety of purposes, including assisting those who are visually impaired in comprehending what is being depicted in a picture or assisting search engines in comprehending picture content and enhancing search results. Building systems for captioning images can be done in a number of ways. One method entails employing a neural network to compress the image into a representation, followed by another neural network to decode the representation into a description in natural language.
Keywords:
Image captions, Visually Impaired, Deep LearningPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- George P Kurias, Gokul Krishna AU, Jifith Joseph, Sharunmon R, Linsa Mathew, A Review of Methodologies for Detecting Missing and Wanted People Using Machine Learning and Video Surveillance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Nighila Ashok, Adithya Ajith, Aparna Shaju, Arjuna Chandran V V, Fahmi Fathima T S, DeepScan : A Deepfake Video Detection System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Prinu Vinod Nair, Rohit Subash Nair, Samuel Thomas Mathew S, Ansamol Varghese, Weed detection using YOLOv3 and elimination using organic weedicides with Live feed on Web App , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- FATHIMA P.S, ANU ROSE JOY, ANSPIN TITUS, ANSU MARIUM SHIBU, ASNA AZEEZ, INDIAN SIGN LANGUAGE RECOGNITION USING YOLOV5 , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr Anil A R, Amit Sankar Arun, Anandhu Anilkumar, Anandu S Sivan, Anoop Manoharan, DESIGNING OF A VOICE – BASED PROGRAMMING IDE FOR SOURCE CODE GENERATION , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Sandra Raju, Dr S Sruthy, A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Meenu Harikumar, Navya Sajeev, Sayoojya Saji, Sona Sunny, Prof Thushara Sukumar, COMPARATIVE SYSTEM OF PRIVACY PRESERVING IMAGE BASED ENCRYPTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Meenu Harikumar, Navya Sajeev, Sayoojya Saji, Sona Sunny, Prof.Thushara Sukumar, COMPARATIVE SYSTEM OF PRIVACY PRESERVING IMAGE BASED ENCRYPTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Honey Joseph, A Survey and Analysis on Predicting Heart Disease Using Machine Learning Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.