Image Descriptor For Visually Impaired
Abstract
An image descriptor is a system that generates a voice description of the context of an image. The initial step involves the generation of a textual description of the image. It entails analyzing an image with machine learning algorithms and producing a description of the image in natural language. The obtained captions are then converted to voice output. Systems for captioning images can be used for a variety of purposes, including assisting those who are visually impaired in comprehending what is being depicted in a picture or assisting search engines in comprehending picture content and enhancing search results. Building systems for captioning images can be done in a number of ways. One method entails employing a neural network to compress the image into a representation, followed by another neural network to decode the representation into a description in natural language.
Keywords:
Image captions, Visually Impaired, Deep LearningPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Aleena Joseph, Diya Paramesh G, Elza Mary Thomas, Gayathri V, Anu V Kottath, A Review on Comparison of VGG-16 and DenseNet algorithms for analysing brain tumor in MRI image , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr. Indu John, A Adithya, Alwin Rajan, Amal Biso George, Farhaan M Hussain, HEALTH GUARD-A Multiple Disease Prediction Model Based on Machine learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aniruddha Das, Avisikta Modak, The Carbon footprint of Machine Learning Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Akil Saji, Sreeyuktha Ramesh, Aabel Jacob, Saumya Sadanadan, Rosmartina Shaju, Dr S N Kumar, Enhancing Image Security with Introduction to Blockchain , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Rintu Jose, Study on Separable Reversible Data Hiding in Encrypted Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Honey Joseph, Aaron M Vinod, Abin Mathew varghese, Aby Alex, Aleena Sain, Crop Yield Prediction Using ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anna Thomas, Esther Thankam Mathew, Anitta Emmanuel, Noel Thomas, Auxilia: Assistive Learning Tool for Children with Down Syndrome , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Niya Joseph, Tintu Alphonsa Thomas, A Systematic Review of Content-Based Image Retrieval Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dipjyoti Deka, Rituparna Seal, Shubham Banik, Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sandra Saji, Melbin Mathew, Angel Mariya S, Amrutha Mugesh, Jincy Lukose, MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.