MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES
Abstract
Tomato, which is scientifically known as Solanum lycopersicum, is a widely cultivated plant in the nightshade family, Solanaceae. It is an important source of food, both fresh and in processed form, and is grown in many parts of the world. However, tomato plants are prone to various diseases, which can significantly reduce their yield and quality. Early detection and prediction of these diseases can help in timely treatment and management which can ultimately lead to higher crop productivity. Machine learning techniques have shown promise in detecting and predicting plant diseases. This approach can be used to improve the efficiency and effectiveness of tomato cultivation and can have a significant impact on the agricultural industry. The use of machine learning algorithms can increase the efficiency of tomato cultivation. In this study, we present a machine learning-based approach for the detection and prediction of tomato leaf diseases. We use a dataset of images of tomato leaves infected with different diseases such as tomato yellow curl virus,
bacterial spot, and late blight along with healthy leaves, to train a Random Forest model. The model is then tested on a separate dataset to evaluate its performance
Keywords:
Random forest, Feature Extraction, training data, testing data, tomato leaf disease detectionPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- P S Aswin, Archana Madhusudhanan , Athulya Sajeev, Neeha Moideen , C R Suhail, Revolutionizing Football Management: A Data-Driven Approach with Random Forest Regressor , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Joyal Joby Joseph, Michael Abraham Philips, Noel J Abraham, Steffi Maria Saji, Shiney Thomas, A Review of Parkinson Disease Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Muhammed Saalim O.S, Fathima Parvin M.A, Albiya Hameed, Hiba Fathima T.S, Amritha Soloman, AGRISEN Precise irrigation System and Smart health monitoring system , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Athira Sankar, Sajishma S R, Alan Raj, Vaishnavi A K, Reshmi S Kaimal, Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- M Sreedharsh, S Saurav, Albin Joseph, Sravan Chandran , Lida K Kuriakose, Childhood Epilepsy Syndrome Classification through a Deep Learning Network with Clinical History Integration , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Layana S Pradeep, Milen Ninan Ittiyeipe, Shahina S, Soumya A S, Ojus Thomas Lee , Gayathri Mohan, A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Albin Thomas Lalu, Resmara S, Alen A Thankachen, Sneha Priya Sebastian, Dany Jennez , Lirin Blesson, Kesia Sunny, Fault Detection of Transmission Lines Using Unmanned Aerial Vehicle (UAV) , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- R Karthika, Maria Toms, S R Aadrash, P U Prabath, InsightAI: Bridging Natural Language and Data Analytics , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.