MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES
Abstract
Tomato, which is scientifically known as Solanum lycopersicum, is a widely cultivated plant in the nightshade family, Solanaceae. It is an important source of food, both fresh and in processed form, and is grown in many parts of the world. However, tomato plants are prone to various diseases, which can significantly reduce their yield and quality. Early detection and prediction of these diseases can help in timely treatment and management which can ultimately lead to higher crop productivity. Machine learning techniques have shown promise in detecting and predicting plant diseases. This approach can be used to improve the efficiency and effectiveness of tomato cultivation and can have a significant impact on the agricultural industry. The use of machine learning algorithms can increase the efficiency of tomato cultivation. In this study, we present a machine learning-based approach for the detection and prediction of tomato leaf diseases. We use a dataset of images of tomato leaves infected with different diseases such as tomato yellow curl virus,
bacterial spot, and late blight along with healthy leaves, to train a Random Forest model. The model is then tested on a separate dataset to evaluate its performance
Keywords:
Random forest, Feature Extraction, training data, testing data, tomato leaf disease detectionPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Lis Jose , Achyuth P Murali, Christin Joseph Shaji, Christy Kunjumon Peter , Multiple Detection and Diagnosis of Skin Diseases using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Melvin Tom Varghese, Joseph V S, Kevin Chacko, Johns Benny, Tintu Alphonsa Thomas, Crop Recommendation System using Machine Learning and IoT , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jyothis Joseph, Angeetha Raju, Aparna Santhosh, Ashitha Jenish, K S Minu, Survey on Fake Profile Detection in Social Media , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Mekha Jose, Jocelyn Anthony, Jose V Joseph, Joshwa Thomas, Sharon Baby Thomas, A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Dr. Indu John, A Adithya, Alwin Rajan, Amal Biso George, Farhaan M Hussain, HEALTH GUARD-A Multiple Disease Prediction Model Based on Machine learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Fabeela Ali Rawther, Abhinay A K, Anagha Tess B, Alan Joseph, Adham Saheer, Survey of Machine Learning and Deep Learning Approaches for Automated Hate Speech Detection and Sentiment Analysis in Multilingual Contexts , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- P S Aswin, Archana Madhusudhanan , Athulya Sajeev, Neeha Moideen , C R Suhail, Revolutionizing Football Management: A Data-Driven Approach with Random Forest Regressor , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.