Survey of Strabismus Detection Techniques
Abstract
Strabismus, or “crossed-eyes,” is one of the most
common ocular diseases. Strabismus has a serious impact on
human life. Patients with strabismus not only have visual but also
psychological and social effects from their condition. In adults, one
study showed that large-angle horizontal strabismus could affect
one’s ability to gain employment. This appeared to be more
important for women’s employability than men. These
psychosocial effects may be influenced by whether the degree of
ocular misalignment is detectable by those with whom they have
contact. If the strabismus is not detectable, presumably the
observers’ negative feelings for strabismus would not be invoked.
As a result, a timely strabismus screening becomes important and
essential for preventing strabismus. So far, there are multiple ways
to complete strabismus screening. Traditional strabismus
screening is conducted manually by ophthalmologists through
many tests, such as the cover and uncover test, prism cover test
and the Hirschberg test. The proposed method uses a frontal facial
image from a patient, and it measures the deviation of the
positional similarity of two eyes within the image, which aims to
provide ophthalmologists with interpretable information for the
diagnosis of strabismus.
Keywords:
Strabismus Detection, Convolutional Neural Network, K-Nearest Neighbors, Support Vector MachinePublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Nighila Ashok, Adithya Ajith, Aparna Shaju, Arjuna Chandran V V, Fahmi Fathima T S, DeepScan : A Deepfake Video Detection System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Athulya Anilkumar, Abhinav V V, Aneeta Shajan, Anjana S Nair, Bini M Issac, R Neenu, Image Descriptor For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Sinciya P.O , Ameena Ismail, Christin Abu, Don P Mathew, Gokul Krishnan G , Enhancing LSD Image Classification Techniques A Literature Review on Classification Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- S Sreejith, Akshara Santhosh, Ardra Haridas, S Jayakrishnan, Ojus Thomas Lee, Chitra Merin Varghese, BrailE- Reading Device for the Deaf and Blind in Real Time Speech , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Albin Thomas Lalu, Resmara S, Alen A Thankachen, Sneha Priya Sebastian, Dany Jennez , Lirin Blesson, Kesia Sunny, Fault Detection of Transmission Lines Using Unmanned Aerial Vehicle (UAV) , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Kaveri S, Pooja Satheesh, Kesiya Susan John, Reubel K Wilson, Dr. Jacob John, Predictive Maintenance of Machines Using IoT and Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Sandra Saji, Melbin Mathew, Angel Mariya S, Amrutha Mugesh, Jincy Lukose, MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.