Personality Profiling Using CV Analysis
Abstract
Human personality has been crucial to the growth
of both organizations and individuals. Standard questionnaires
and Curriculum Vitae (CV) analysis are two methods used to
assess human personality. So, a personality prediction system
that combines CV analysis and MBTI model questionnaires to
accurately predict an individual's personality traits based on
their uploaded CV is introduced. The system utilizes advanced
Natural Language Processing (NLP) techniques to extract
relevant information from the CV, including work experience,
education, skills, and achievements. By analysing the textual
content, the system identifies keywords and phrases associated
with different personality traits, laying the foundation for precise
predictions. MBTI model questionnaires are integrated to
further enhance the accuracy of personality prediction. User
responses to the questionnaires are carefully analysed and
mapped to the corresponding personality traits using established
psychological theories and models. A machine learning algorithm
is then employed to create a predictive model, learning from a
pre-labelled dataset of CVs and their associated personality
traits. The system's performance is evaluated using metrics such
as accuracy and precision, ensuring its effectiveness in capturing
the nuances of individual personality traits. The developed
system has significant applications in recruitment and team
composition, aiding employers in making informed hiring
decisions by evaluating candidates whose personalities align with
specific job requirements. Additionally, individuals can benefit
from gaining insights into their own personality traits, enabling
them to make informed career choices and pursue tailored
personal development opportunities. Overall, the proposed
system provides an efficient and accurate approach for
personality prediction based solely on CV analysis and
questionnaire responses.
Keywords:
Personality prediction, CV analysis, MBTI model, NLP, Machine Learning, Recruitment, Team CompositionPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Jefrin Siby Mathew, Joyal Joseph, Roshik George, Tinu Rose Thottungal , Honey Joseph, Multiple Disease Detection using Machine Learning , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Melvin Tom Varghese, Joseph V S, Kevin Chacko, Johns Benny, Tintu Alphonsa Thomas, Crop Recommendation System using Machine Learning and IoT , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Goutham P Raj, Gregan George, Hadii Hasan, John Ashwin Delmon, V Pradeeba, COMPREHENSIVE VEHICLE SERVICES & E-COMMERCE PLATFORM WITH PRICE PREDICTION USING ML , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr nitha C Vellayudan, Akshay K.P, Muhamed Adhil P.M, C.A Sivasankar , Crop Yield and Price Prediction , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Krishnendu B, Sreelakshmi A, Sumayya Maheen, Zameel Hassan, Honey Joseph, Chatbot-Enabled Symptom Assessment: Revolutionizing Disease Diagnosis and Patient Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Athira Sankar, Sajishma S R, Alan Raj, Vaishnavi A K, Reshmi S Kaimal, Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Honey Joseph, Aaron M Vinod, Abin Mathew varghese, Aby Alex, Aleena Sain, Crop Yield Prediction Using ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.