Multiple Disease Detection using Machine Learning
Abstract
The project ”Multiple Disease Detection using Machine Learning” aims to develop a system for the accurate and efficient detection of multiple diseases using machine learning algorithms. The system is designed to analyze patient data, including medical history, symptoms, and test results, and predict the likelihood of several diseases simultaneously. The project involves data pre processing, feature selection, and model training using various machine learning techniques such as decision trees, random forests, and support vector machines. The performance of the developed system is evaluated based on metrics such as accuracy, precision, recall, and F1-score using a dataset of patients with multiple diseases. The results of this project have the potential to improve the accuracy and efficiency of disease diagnosis, leading to better patient outcomes and reduced healthcare costs
Keywords:
Support Vector Machine, Logistic Regression, Disease Prediction, Accuracy, PrecisionPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Jyothis Joseph, Angeetha Raju, Aparna Santhosh, Ashitha Jenish, K S Minu, Survey on Fake Profile Detection in Social Media , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr nitha C Vellayudan, Akshay K.P, Muhamed Adhil P.M, C.A Sivasankar , Crop Yield and Price Prediction , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Honey Joseph, A Survey and Analysis on Predicting Heart Disease Using Machine Learning Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sandra Saji, Melbin Mathew, Angel Mariya S, Amrutha Mugesh, Jincy Lukose, MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Joel Lee George, Karthik S Kumar , Riya Merce Thomas, Roshan Roy Varghese, Simy Mary Kurian, Epidemo A Machine Learning Regression-Based , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Fabeela Ali Rawther, Abhinay A K, Anagha Tess B, Alan Joseph, Adham Saheer, Survey of Machine Learning and Deep Learning Approaches for Automated Hate Speech Detection and Sentiment Analysis in Multilingual Contexts , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Parvathy V A, Irfana Parveen C A, Alisha K A, Reshma P R, Manu Krishna C P, Detection of Diabetic Retinopathy and Glaucoma using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Lis Jose , Achyuth P Murali, Christin Joseph Shaji, Christy Kunjumon Peter , Multiple Detection and Diagnosis of Skin Diseases using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Alan Joseph, A K Abhinay, Dr. Gee Varghese Titus, Anagha Tess B, Adham Saheer, Fabeela Ali Rawther, Comparative Analysis of Text Classification Models for Offensive Language Detection on Social Media Platforms , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.