InsightAI: Bridging Natural Language and Data Analytics
Abstract
This project introduces an innovative application that
leverages generative AI, specifically pre- trained large language models, for
extracting and interpreting data from large databases, transforming it into
comprehensible insights. The approach involves pre-training the model to
establish a foundational understanding of language and context.
Subsequently, the model is fine-tuned to specialize in database querying,
learning to interpret natural language questions and translating them into
precise database queries. The application further utilizes in-context
learning, allowing the model to adapt and refine its understanding based
on the specific context of database interactions. After retrieving the
relevant data, the application employs generative AI algorithms to produce
coherent, natural language answers. This process converts complex
database information into easily understandable insights, bridging the gap
between intricate data structures and user comprehension. To showcase
this technology, the project applies these techniques to a large, synthetic
dataset created using OpenAI API, simulating various customer surveys
across different product segments and customer categories. For example, a
user could query, “What do gold customers think about our premium
broadband service?” The application would then generate and execute the
appropriate database query, followed by presenting a summarized insight
drawn from the data. This project not only simplifies interactions with
large-scale data but also opens new avenues for advanced data analysis and
informed decision-making. The combination of pre-training, fine-tuning,
and in-context learning harnesses the power of pre-trained language
models, enabling the application to navigate and interpret complex
databases with a high degree of accuracy and efficiency
Keywords:
Generative AI, Fine tuning, In-context learning, Natural language, OpenAI API, Pre- trained modelsPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Muneebah Mohyiddeen, Sana T.H, Anoodh Hussain, Nandana P Narayanan, Sneha Soman, DGCURE: Model for Detection of Dysgraphia , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Betzy Babu Thoppil, Anugrah Premachandran, Annapoorna M, Ashwin Mathew Zachariah, Bala Susan Jacob, Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ryan Leo , Mathews P Jose, Eirene Nikky , Lloyd Micheal, Chinnu Edwin A , Controlling a Mini Game using a Brain-Computer Interface , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Kevin Roy, Lino Shaji, Riya G Johnson, Tince Tomy, Jane George, INTELLIGENT BUDDY , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Asha Joseph, Deep Learning for Cyber Threat Detection , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Alan Joseph, A K Abhinay, Dr. Gee Varghese Titus, Anagha Tess B, Adham Saheer, Fabeela Ali Rawther, Comparative Analysis of Text Classification Models for Offensive Language Detection on Social Media Platforms , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr. Indu John, A Adithya, Alwin Rajan, Amal Biso George, Farhaan M Hussain, HEALTH GUARD-A Multiple Disease Prediction Model Based on Machine learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Lis Jose , Achyuth P Murali, Christin Joseph Shaji, Christy Kunjumon Peter , Multiple Detection and Diagnosis of Skin Diseases using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.