InsightAI: Bridging Natural Language and Data Analytics
Abstract
This project introduces an innovative application that
leverages generative AI, specifically pre- trained large language models, for
extracting and interpreting data from large databases, transforming it into
comprehensible insights. The approach involves pre-training the model to
establish a foundational understanding of language and context.
Subsequently, the model is fine-tuned to specialize in database querying,
learning to interpret natural language questions and translating them into
precise database queries. The application further utilizes in-context
learning, allowing the model to adapt and refine its understanding based
on the specific context of database interactions. After retrieving the
relevant data, the application employs generative AI algorithms to produce
coherent, natural language answers. This process converts complex
database information into easily understandable insights, bridging the gap
between intricate data structures and user comprehension. To showcase
this technology, the project applies these techniques to a large, synthetic
dataset created using OpenAI API, simulating various customer surveys
across different product segments and customer categories. For example, a
user could query, “What do gold customers think about our premium
broadband service?” The application would then generate and execute the
appropriate database query, followed by presenting a summarized insight
drawn from the data. This project not only simplifies interactions with
large-scale data but also opens new avenues for advanced data analysis and
informed decision-making. The combination of pre-training, fine-tuning,
and in-context learning harnesses the power of pre-trained language
models, enabling the application to navigate and interpret complex
databases with a high degree of accuracy and efficiency
Keywords:
Generative AI, Fine tuning, In-context learning, Natural language, OpenAI API, Pre- trained modelsPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Jefrin Siby Mathew, Joyal Joseph, Roshik George, Tinu Rose Thottungal , Honey Joseph, Multiple Disease Detection using Machine Learning , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Jyothis Joseph, Angeetha Raju, Aparna Santhosh, Ashitha Jenish, K S Minu, Survey on Fake Profile Detection in Social Media , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Jacob John, Alan Thomas Shaji, Adithyan Suresh Kumar, Aadhi Lakshmi M R, Alphonsa Francis, An Idea Sharing and Validation Platform Using Blockchain with Delegated Proof of Contribution (DPoC) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Minu Cherian, Elzabeth Bobus, Bala Susan Jacob, M Annapoorna, Ashwin Mathew Zacheria, Empowering Laptop Selection with Natural Language Processing Chatbot and Data Driven Filtering Assistance , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Parvathy V A, Irfana Parveen C A, Alisha K A, Reshma P R, Manu Krishna C P, Detection of Diabetic Retinopathy and Glaucoma using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- FATHIMA P.S, ANU ROSE JOY, ANSPIN TITUS, ANSU MARIUM SHIBU, ASNA AZEEZ, INDIAN SIGN LANGUAGE RECOGNITION USING YOLOV5 , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr. Indu John, Gauri Santhosh, Jesna Susan Reji, Abdul Musawir, Glady Prince, Detection of Autism Spectrum Disorder in Toddlers using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr.Jacob John, Aadhi Lakshmi M R, Alan Thomas Shaji, Alphonsa Francis, Adithyan Suresh Kumar, An Idea Sharing and Validation Platform Using Blockchain with Delegated Proof of Contribution (DPoC) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dona S Plavelil, A Devanandha, Haritha H Kurupp, Jissin k Jose, DETECTION OF ALZHEIMER’S DISEASE AND ASSISTANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Mekha Jose, Avin Joshy, Abishek R Paleri, Athul Mohan, Ali Jasim R M, A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.