InsightAI: Bridging Natural Language and Data Analytics
Abstract
This project introduces an innovative application that
leverages generative AI, specifically pre- trained large language models, for
extracting and interpreting data from large databases, transforming it into
comprehensible insights. The approach involves pre-training the model to
establish a foundational understanding of language and context.
Subsequently, the model is fine-tuned to specialize in database querying,
learning to interpret natural language questions and translating them into
precise database queries. The application further utilizes in-context
learning, allowing the model to adapt and refine its understanding based
on the specific context of database interactions. After retrieving the
relevant data, the application employs generative AI algorithms to produce
coherent, natural language answers. This process converts complex
database information into easily understandable insights, bridging the gap
between intricate data structures and user comprehension. To showcase
this technology, the project applies these techniques to a large, synthetic
dataset created using OpenAI API, simulating various customer surveys
across different product segments and customer categories. For example, a
user could query, “What do gold customers think about our premium
broadband service?” The application would then generate and execute the
appropriate database query, followed by presenting a summarized insight
drawn from the data. This project not only simplifies interactions with
large-scale data but also opens new avenues for advanced data analysis and
informed decision-making. The combination of pre-training, fine-tuning,
and in-context learning harnesses the power of pre-trained language
models, enabling the application to navigate and interpret complex
databases with a high degree of accuracy and efficiency
Keywords:
Generative AI, Fine tuning, In-context learning, Natural language, OpenAI API, Pre- trained modelsPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Syam Gopi, Evelyn Susan Jacob, Joel John, Raynell Rajeev, Steve Alex, Survey on AI Malware Detection Methods and Cybersecurity Education , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Richa Maria Biju, Merwin Maria Antony, Mishal Rose Thankachan, Joshua John Sajit, Bini M Issac, Enhancing Image Forgery Detection with Multi-Modal Deep Learning and Statistical Methods , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Honey Joseph, Aaron M Vinod, Abin Mathew varghese, Aby Alex, Aleena Sain, Crop Yield Prediction Using ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Mrs. Lis Jose, Akhil Lorence, Akhil Manohar, Amal Jose Chacko, Arjun J, Lung Disease Detection From Chest X-ray Images Using Hybrid Machine Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anishamol Abraham, Elbin Santhosh, Diliya Saji, Edwin Roy, Catherine Achu Punnoose, AI Revolutionizing Fashion: A Review of Algorithms and Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Jefrin Siby Mathew, Joyal Joseph, Roshik George, Tinu Rose Thottungal , Honey Joseph, Multiple Disease Detection using Machine Learning , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.