InsightAI: Bridging Natural Language and Data Analytics
Abstract
This project introduces an innovative application that
leverages generative AI, specifically pre- trained large language models, for
extracting and interpreting data from large databases, transforming it into
comprehensible insights. The approach involves pre-training the model to
establish a foundational understanding of language and context.
Subsequently, the model is fine-tuned to specialize in database querying,
learning to interpret natural language questions and translating them into
precise database queries. The application further utilizes in-context
learning, allowing the model to adapt and refine its understanding based
on the specific context of database interactions. After retrieving the
relevant data, the application employs generative AI algorithms to produce
coherent, natural language answers. This process converts complex
database information into easily understandable insights, bridging the gap
between intricate data structures and user comprehension. To showcase
this technology, the project applies these techniques to a large, synthetic
dataset created using OpenAI API, simulating various customer surveys
across different product segments and customer categories. For example, a
user could query, “What do gold customers think about our premium
broadband service?” The application would then generate and execute the
appropriate database query, followed by presenting a summarized insight
drawn from the data. This project not only simplifies interactions with
large-scale data but also opens new avenues for advanced data analysis and
informed decision-making. The combination of pre-training, fine-tuning,
and in-context learning harnesses the power of pre-trained language
models, enabling the application to navigate and interpret complex
databases with a high degree of accuracy and efficiency
Keywords:
Generative AI, Fine tuning, In-context learning, Natural language, OpenAI API, Pre- trained modelsPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Sinciya P.O , Ameena Ismail, Christin Abu, Don P Mathew, Gokul Krishnan G , Enhancing LSD Image Classification Techniques A Literature Review on Classification Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Layana S Pradeep, Milen Ninan Ittiyeipe, Shahina S, Soumya A S, Ojus Thomas Lee , Gayathri Mohan, A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Joel Lee George, Karthik S Kumar , Riya Merce Thomas, Roshan Roy Varghese, Simy Mary Kurian, Epidemo A Machine Learning Regression-Based , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nihal Anil, Ms. Nighila Abhish, Jesila Joy , Noora Sajil , P R Vishnuraj, Augmented Neat Algorithm For Enhanced Cognitive Interaction (NEAT-X) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nithya Rajesh, M Ashwin, Nithin Sajan Thomas, Reshma Rajendran B, Sustainable Use of Autoclaved Aerated Concrete(AAC) Block Waste in Concrete , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Parvathy S Kurup, Pranav P Nair, Sai Kishor, Aryan S Nair, Pranav P, Face Image Synthesis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.