CARDAMOM PLANT DISEASE DETECTION USING ROBOT
Abstract
The cardamom plant has various types of diseases. Among these diseases, leaf blight and leaf spot cause too much damage. Early detection and prevention of these diseases is done with the help of a robot. In this approach, we proceed in several steps. i.e. image collection, image processing, machine learning, image classification and fertilizer design. Cardamom is the queen of spices. It is indigenously grown in the evergreen forests of Karnataka, Kerala, Tamil Nadu and the north-eastern states of India. India is the third largest producer of cardamom. Plant diseases have a disastrous effect on the safety of food production; they reduce the eminence and quantity of agricultural products. Plant diseases can cause significantly high losses or no harvest in severe cases. Various diseases and pests affect the growth of cardamom plants at different stages and crop yields. This study focused on two cardamom plant diseases, Colletotrichum Blight and Phyllosticta Leaf Spot of cardamom and three grape diseases, Black Rot, ESCA and Isariopsis Leaf Spot. Various methods have been proposed to detect plant diseases and deep learning has become the preferred method due to its spectacular success. In this study, U2-Net was used to remove the unwanted background of the input image by selecting multi-scale features. This work proposes an approach for disease detection of cardamom plants using the EfficientNetV2 model. A comprehensive set of experiments was conducted to investigate the performance of the proposed approach and compare it with other models such as EfficientNet and Convolutional Neural Network (CNN).
Keywords:
CNN - Convolutional Neural Network, GLCM - Gray Level Co-occurrence Matrix, Deep Learning, Machine Learning, Soft Computing, Computer Vision, Artifical Intelligence, Artificial Neural NetworkPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Prayag Suresh, Sneha Susan Alex, Rojan Varghese, Thomas Zacharias, Shiney Thomas, Survey of Strabismus Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Amith Bino, Don Peter Joseph, Sreehari P, Anchal J Vattakunnel, Revolutionizing Nutritional Management Through Food Scanning And Object Detection: A New Android Application For Adults , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nihal Anil, Ms. Nighila Abhish, Jesila Joy , Noora Sajil , P R Vishnuraj, Augmented Neat Algorithm For Enhanced Cognitive Interaction (NEAT-X) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Mrs. Lis Jose, Akhil Lorence, Akhil Manohar, Amal Jose Chacko, Arjun J, Lung Disease Detection From Chest X-ray Images Using Hybrid Machine Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- M Sreedharsh, S Saurav, Albin Joseph, Sravan Chandran , Lida K Kuriakose, Childhood Epilepsy Syndrome Classification through a Deep Learning Network with Clinical History Integration , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Parvathy V A, Irfana Parveen C A, Alisha K A, Reshma P R, Manu Krishna C P, Detection of Diabetic Retinopathy and Glaucoma using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jyothis Joseph, Angeetha Raju, Aparna Santhosh, Ashitha Jenish, K S Minu, Survey on Fake Profile Detection in Social Media , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amal P Varghese , Juby Mathew, Advancements in Vehicular Communication Systems: Integrating IoT, Edge Cloud Computing, Microgrid Energy Management, Blockchain, AI, and Simulation Tools , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amala Jayan, Feneesha V B, Rameesa Dilsa C P, Sandra Maryam Binu, Sandra Maryam Binu, Stockwise: A survey on stock price prediction models , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.