Enhancing Image Forgery Detection with Multi-Modal Deep Learning and Statistical Methods
Abstract
The manipulation of digital images from journalism to social media and in forensics has made detection of image forgery a significant area of research. Techniques for forgery detection are generally classified into three categories: splicing, copy-move, and retouching. The mainstay of the classic methods is handcrafted features which range from resampling artefacts to edge inconsistencies and finally DCT coefficients that point towards anomalies. However, with deep learning, this domain has totally transformed: it is possible to learn complex patterns straight from pixel data to get even more sophisticated detec- tion. Modern approaches rely on convolutional neural networks (CNNs) and prefabricated architectures such as ResNet50 and VGG16 to embrace both global and local inconsistency in images. Hybrid models combining the capabilities from deep learning and statistical methods have also been found to perform better than others. With all these advances, however, several problems still exist. It is challenging to produce subtle forgeries that survive most post-processing procedures, such as compression and resizing. More generalizable models, along with the designs they are intended to build upon, should be developed for the detection of various kinds of forgeries in diverse image datasets and reflect real challenges in diverse real-world scenarios.
Keywords:
hybrid models, handcrafted features, DCT coefficients, VGG16, ResNet50, convolutional neural networks (CNNs), deep learning, copy- move forgery, splicing forgery, Image forgery detectionPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Alan Joseph, A K Abhinay, Dr. Gee Varghese Titus, Anagha Tess B, Adham Saheer, Fabeela Ali Rawther, Comparative Analysis of Text Classification Models for Offensive Language Detection on Social Media Platforms , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Honey Joseph, A Survey and Analysis on Predicting Heart Disease Using Machine Learning Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Adith Ajay, Automatic Fall Detection And Alert System For Home Safety , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Jefrin Siby Mathew, Joyal Joseph, Roshik George, Tinu Rose Thottungal , Honey Joseph, Multiple Disease Detection using Machine Learning , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Niya Joseph, Tintu Alphonsa Thomas, A Systematic Review of Content-Based Image Retrieval Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amrutha Priya C B, Nitha C Velayudhan, Arjun K S, Aleena Francis, Divya P S, AI Enabled Robot for Data Collection in Unreachable and Extreme Environment , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- R Karthika, Maria Toms, S R Aadrash, P U Prabath, InsightAI: Bridging Natural Language and Data Analytics , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anna Thomas, Esther Thankam Mathew, Anitta Emmanuel, Noel Thomas, Auxilia: Assistive Learning Tool for Children with Down Syndrome , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Honey Joseph, Aaron M Vinod, Abin Mathew varghese, Aby Alex, Aleena Sain, Crop Yield Prediction Using ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Kaveri S, Pooja Satheesh, Kesiya Susan John, Reubel K Wilson, Dr. Jacob John, Predictive Maintenance of Machines Using IoT and Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.