Enhancing Image Forgery Detection with Multi-Modal Deep Learning and Statistical Methods
Abstract
The manipulation of digital images from journalism to social media and in forensics has made detection of image forgery a significant area of research. Techniques for forgery detection are generally classified into three categories: splicing, copy-move, and retouching. The mainstay of the classic methods is handcrafted features which range from resampling artefacts to edge inconsistencies and finally DCT coefficients that point towards anomalies. However, with deep learning, this domain has totally transformed: it is possible to learn complex patterns straight from pixel data to get even more sophisticated detec- tion. Modern approaches rely on convolutional neural networks (CNNs) and prefabricated architectures such as ResNet50 and VGG16 to embrace both global and local inconsistency in images. Hybrid models combining the capabilities from deep learning and statistical methods have also been found to perform better than others. With all these advances, however, several problems still exist. It is challenging to produce subtle forgeries that survive most post-processing procedures, such as compression and resizing. More generalizable models, along with the designs they are intended to build upon, should be developed for the detection of various kinds of forgeries in diverse image datasets and reflect real challenges in diverse real-world scenarios.
Keywords:
hybrid models, handcrafted features, DCT coefficients, VGG16, ResNet50, convolutional neural networks (CNNs), deep learning, copy- move forgery, splicing forgery, Image forgery detectionPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Leo Jose, Navin Shibu George, Raju, Safa Haroon, Bini M Issac, Wearable Technology for Driver Monitoring and Health Management: A Comprehensive Survey , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dipjyoti Deka, Rituparna Seal, Shubham Banik, Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nikita Niteen , Simy Mary Kurian, Exploring Explainable AI, Security and Beyond : A Comprehensive Review , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Dr. Indu John, Gauri Santhosh, Jesna Susan Reji, Abdul Musawir, Glady Prince, Detection of Autism Spectrum Disorder in Toddlers using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anna N Kurian, Amitha Anil, Andriya Raju, Ancita J Feriah, Aiswarya Lakshmi Navami, Deep Learning based Multimodal Brain MRI Tumor Classification as a Diagnostic Tool to Benefit Clinical Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Amina Manaf , Ance Maria Joseph , Angel Joy , Anjaly Anilkumar , K S Rekha, Driver Drowsiness Detection Using Python , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anna Jose, Anit Devesiya, Albin Scaria Sabu, Anand Baby John, Prof.Maria Yesudas, AMIGO APPLICATION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Arya Raj S, R Gopika Krishnan, Drishya Das, Rohith R, Jocelyn Ann Joseph, Personality Profiling Using CV Analysis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.