A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection
Abstract
In the era of digital communication, the prolifer- ation of social media has facilitated the exchange of ideas but has also led to the rampant dissemination of offensive and toxic content. This paper aims to explore the advancements in machine learning (ML) and deep learning (DL) techniques specifically tailored for offensive text detection within social media posts. We begin by examining various ML models, including Logistic Regression, Support Vector Machines (SVM), and Random Forests, which have been effectively utilized for classifying toxic language. Additionally, we investigate deep learning approaches, such as BERT and its derivatives, which leverage contextual understanding for enhanced performance in identifying and miti- gating offensive content. Furthermore, we analyze text extraction models, including YOLO and SSD MobileNet V2, which facilitate the detection of text in images shared across social platforms. Through a comparative analysis of these technologies, we discuss their advantages, limitations, and practical applications in real-time detection systems. Our findings indicate that while traditional ML models provide a solid foundation for offensive text detection, the integration of deep learning methodologies significantly improves classification accuracy and contextual sensitivity. This paper highlights the importance of deploying these advanced techniques to foster safer online environments and mitigate the adverse effects of harmful communication on social media.
Keywords:
Offensive Text Detection, Machine Learning (ML), Deep Learning (DL), Toxic Language Classification, BERT Model, Social Media Content Moderation, Support Vector Machines (SVM), Text Extraction, YOLOv4, YOLOv5, Image-based Text Detection, CNN-LSTM, Natural Language ProcessingPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Nighila Ashok, Adithya Ajith, Aparna Shaju, Arjuna Chandran V V, Fahmi Fathima T S, DeepScan : A Deepfake Video Detection System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dipjyoti Deka, Rituparna Seal, Shubham Banik, Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Asha Joseph, Deep Learning for Cyber Threat Detection , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Mrs. Lis Jose, Akhil Lorence, Akhil Manohar, Amal Jose Chacko, Arjun J, Lung Disease Detection From Chest X-ray Images Using Hybrid Machine Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Richa Maria Biju, Merwin Maria Antony, Mishal Rose Thankachan, Joshua John Sajit, Bini M Issac, Enhancing Image Forgery Detection with Multi-Modal Deep Learning and Statistical Methods , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Amal P Varghese, Simy Mary Kurian, Advancements in ECG Heartbeat Classification: A Comprehensive Review of Deep Learning Approaches and Imbalanced Data Solutions , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
You may also start an advanced similarity search for this article.