A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection
Abstract
In the era of digital communication, the prolifer- ation of social media has facilitated the exchange of ideas but has also led to the rampant dissemination of offensive and toxic content. This paper aims to explore the advancements in machine learning (ML) and deep learning (DL) techniques specifically tailored for offensive text detection within social media posts. We begin by examining various ML models, including Logistic Regression, Support Vector Machines (SVM), and Random Forests, which have been effectively utilized for classifying toxic language. Additionally, we investigate deep learning approaches, such as BERT and its derivatives, which leverage contextual understanding for enhanced performance in identifying and miti- gating offensive content. Furthermore, we analyze text extraction models, including YOLO and SSD MobileNet V2, which facilitate the detection of text in images shared across social platforms. Through a comparative analysis of these technologies, we discuss their advantages, limitations, and practical applications in real-time detection systems. Our findings indicate that while traditional ML models provide a solid foundation for offensive text detection, the integration of deep learning methodologies significantly improves classification accuracy and contextual sensitivity. This paper highlights the importance of deploying these advanced techniques to foster safer online environments and mitigate the adverse effects of harmful communication on social media.
Keywords:
Offensive Text Detection, Machine Learning (ML), Deep Learning (DL), Toxic Language Classification, BERT Model, Social Media Content Moderation, Support Vector Machines (SVM), Text Extraction, YOLOv4, YOLOv5, Image-based Text Detection, CNN-LSTM, Natural Language ProcessingPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Lis Jose, Polarity Classification of Malayalam Document-A Rule Based Approach , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- ANU ROSE JOY, Christeena Antony, Dona Mariyam John, Anuja Sara Mathew, Christeen Mareia Paul, UnLocking Emotion Recognition in ASD Children: Analyzing Facial Expressions , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- R Karthika, Maria Toms, S R Aadrash, P U Prabath, InsightAI: Bridging Natural Language and Data Analytics , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aniruddha Das, Avisikta Modak, The Carbon footprint of Machine Learning Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Albin Thomas Lalu, Resmara S, Alen A Thankachen, Sneha Priya Sebastian, Dany Jennez , Lirin Blesson, Kesia Sunny, Fault Detection of Transmission Lines Using Unmanned Aerial Vehicle (UAV) , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Syam Gopi, Evelyn Susan Jacob, Joel John, Raynell Rajeev, Steve Alex, Survey on AI Malware Detection Methods and Cybersecurity Education , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- M Manoj, A S Athira, Rishna Ramesh, Sandhra Gopi, Firoz P U, Smart Attend Insights , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.