Survey on AI Malware Detection Methods and Cybersecurity Education
Abstract
This paper provides an extensive overview of recent advancements in deep learning-based methods for detecting malware and in programs for educating people about cybersecurity. The overview includes hybrid models, detection based on images, and advanced techniques for extracting features such as texts and images. The main techniques assessed include Convolutional Neural Networks (CNNs), Long ShortTerm Memory networks (LSTMs), and hybrid models that combine CNNs with Recurrent Neural Networks (RNNs). Furthermore, this article assesses strategies for cybersecurity education, with a focus on engaging employees, providing targeted education for at-risk groups, and integrating digital learning tools. While deep learning models have greatly enhanced the accuracy of malware detection, challenges like the quality of datasets, computational expenses, and adversarial attacks continue to exist. In the field of cybersecurity education, promoting awareness through interactive and gamified techniques has been proven to be effective in creating a more resilient workforce. This overview examines these challenges and suggests future directions, including hybrid models for improved malware detection and scalable digital tools for cybersecurity education
Keywords:
Cybersecurity,, Malware detection, Artificial Intelligence, Convolutional Neural Networks,, Cybersecurity EducationPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Akhil Shaji, Albin Joshy, M J Athulkrishna, Joel Biju, Bino Thomas, COLLEGE BUS SECURITY AND MANAGEMENT SYSTEM , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Joyal Joby Joseph, Michael Abraham Philips, Noel J Abraham, Steffi Maria Saji, Shiney Thomas, A Review of Parkinson Disease Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr.Sinciya P O, Evelyn Susan Jacob, Steve Alex, Cybersecurity Challenges and Solutions in Edge Computing for IoT , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anna Jose, Anit Devesiya, Albin Scaria Sabu, Anand Baby John, Prof.Maria Yesudas, AMIGO APPLICATION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Naveen Philip Abraham, Joppen George, Kevin Sajan, Jonathan Chandy, Jonathan Chandy, Bini M. Issac, Advancements in Assistive Technologies: Enhancing Independence and Accessibility for the Visually Impaired , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Manna Mariam Abraham, Naveen Moncy Mathew , Richu Sakeer Hussain, Tima Jose Thachara , Bibin Varghese, Wild Watch Sentry , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ansamol Varghese, Milu Mary Jacob, Shilpa Mariam James, Reeba Rebecca Varghese, Vimal sajan George, A Review on Integrating IoT and Robotics for Improved Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dipjyoti Deka, Rituparna Seal, Shubham Banik, Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.