LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING
Abstract
Speech perception is characterized as a
multimodal process, which means it elicits several
meanings. Understanding a message can be aided by,
and in some cases even made necessary by, lip reading,
which overlays visual cues on top of auditory signals.
Lip-reading is a crucial field with many uses, including
biometrics, speech recognition in noisy environments,
silent dictation, and enhanced hearing aids. It is a
challenging research project in the area of computer
vision, whose major goal is to watch the movement of
human lips in a video and recognize the textual content
that goes with it. Yet, due to the constraints of lip
changes and the depth of linguistic information, the
complexity of lip identification has increased, which has
slowed the growth of study themes in lip language.
Nowadays, deep learning has advanced in several
sectors, giving us the confidence to perform the task of
lip recognition. Lip learning based on deep learning
often entails extracting features and comprehending
images using a network model, as opposed to classical
lip recognition that recognizes lip characteristics. The
design of the network framework for data gathering,
processing, and data recognition for lip reading is the
main topic of this discussion. In this research, we
created a reliable and accurate method for lip reading.
We first isolate the mouth region and segment it, after
which we extract various aspects from the lip image,
such as the Hog, Surf, and Haar features. Lastly, we use
Gated Recurrent Units to train our deep learning model
(GRU).
Keywords:
Haar, Hog and Surf Features, GRU based deep Learning ArchitecturePublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Melvin Tom Varghese, Joseph V S, Kevin Chacko, Johns Benny, Tintu Alphonsa Thomas, Crop Recommendation System using Machine Learning and IoT , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- R Karthika, Maria Toms, S R Aadrash, P U Prabath, InsightAI: Bridging Natural Language and Data Analytics , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Arya Raj S, R Gopika Krishnan, Drishya Das, Rohith R, Jocelyn Ann Joseph, Personality Profiling Using CV Analysis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Betzy Babu Thoppil, Anugrah Premachandran, Annapoorna M, Ashwin Mathew Zachariah, Bala Susan Jacob, Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jefrin Siby Mathew, Joyal Joseph, Roshik George, Tinu Rose Thottungal , Honey Joseph, Multiple Disease Detection using Machine Learning , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sandra Saji, Melbin Mathew, Angel Mariya S, Amrutha Mugesh, Jincy Lukose, MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- K A Arun, Christine Maria Jose , Ann Mathew, Elizabeth Jullu, Lida K Kuriakose, Location-Based Alarm Systems and Service Recommendations for Enhanced Travel Management , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr. Indu John, Gauri Santhosh, Jesna Susan Reji, Abdul Musawir, Glady Prince, Detection of Autism Spectrum Disorder in Toddlers using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.