LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING
Abstract
Speech perception is characterized as a
multimodal process, which means it elicits several
meanings. Understanding a message can be aided by,
and in some cases even made necessary by, lip reading,
which overlays visual cues on top of auditory signals.
Lip-reading is a crucial field with many uses, including
biometrics, speech recognition in noisy environments,
silent dictation, and enhanced hearing aids. It is a
challenging research project in the area of computer
vision, whose major goal is to watch the movement of
human lips in a video and recognize the textual content
that goes with it. Yet, due to the constraints of lip
changes and the depth of linguistic information, the
complexity of lip identification has increased, which has
slowed the growth of study themes in lip language.
Nowadays, deep learning has advanced in several
sectors, giving us the confidence to perform the task of
lip recognition. Lip learning based on deep learning
often entails extracting features and comprehending
images using a network model, as opposed to classical
lip recognition that recognizes lip characteristics. The
design of the network framework for data gathering,
processing, and data recognition for lip reading is the
main topic of this discussion. In this research, we
created a reliable and accurate method for lip reading.
We first isolate the mouth region and segment it, after
which we extract various aspects from the lip image,
such as the Hog, Surf, and Haar features. Lastly, we use
Gated Recurrent Units to train our deep learning model
(GRU).
Keywords:
Haar, Hog and Surf Features, GRU based deep Learning ArchitecturePublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Dr. Indu John, Gauri Santhosh, Jesna Susan Reji, Abdul Musawir, Glady Prince, Detection of Autism Spectrum Disorder in Toddlers using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Layana S Pradeep, Milen Ninan Ittiyeipe, Shahina S, Soumya A S, Ojus Thomas Lee , Gayathri Mohan, A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Athulya Anilkumar, Abhinav V V, Aneeta Shajan, Anjana S Nair, Bini M Issac, R Neenu, Image Descriptor For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Fabeela Ali Rawther, Raihana Rasaldeen, Stefi Marshal Fernandez, Irin Rose Jaison, Ria Mariam Mathews, A Survey on Automating Answer-Sheet Evaluation Using AI Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- George P Kurias, Gokul Krishna AU, Jifith Joseph, Sharunmon R, Linsa Mathew, A Review of Methodologies for Detecting Missing and Wanted People Using Machine Learning and Video Surveillance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- ANU ROSE JOY, Christeena Antony, Dona Mariyam John, Anuja Sara Mathew, Christeen Mareia Paul, UnLocking Emotion Recognition in ASD Children: Analyzing Facial Expressions , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Joel Lee George, Karthik S Kumar , Riya Merce Thomas, Roshan Roy Varghese, Simy Mary Kurian, Epidemo A Machine Learning Regression-Based , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Adona Shibu, Aarunya Retheep, Albin Joseph, Ali Jasim, Adona Shibu , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.