A Survey and Analysis on Predicting Heart Disease Using Machine Learning Techniques
Abstract
The early prognosis of cardiovascular diseases can
aid in making decisions to lifestyle changes in high-risk patients and in turn reduce their complications. Predicting heart disease using machine learning techniques has been a popular and promising area of research in recent years. Machine learning models can analyze large amounts of medical data and extract patterns and relationships that can help in predicting the likelihood of heart disease in individuals. We can conduct a survey and analysis to predict heart disease using machine learning techniques. Predicting heart disease using machine learning techniques is a promising area of research, and there have been several studies conducted in this field. Here is an overview of a survey and analysis of some of the most prominent studies on this topic. This paper compares the accuracies of different machine learning algorithms on the Cleveland Heart Disease Database in order to present an accurate model of predicting heart disease.
Keywords:
Machine Learning, Classification Techniques, Prediction, Heart DiseasePublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Betzy Babu Thoppil, Anugrah Premachandran, Annapoorna M, Ashwin Mathew Zachariah, Bala Susan Jacob, Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Mrs. Lis Jose, Akhil Lorence, Akhil Manohar, Amal Jose Chacko, Arjun J, Lung Disease Detection From Chest X-ray Images Using Hybrid Machine Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ansamol Varghese, Anandhu Anoj, Emil Thomas, Deepta K Sunny, Angel Thomas, TrueNews: AI Powered Detection of Manipulated Text and Images , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Parvathy V A, Irfana Parveen C A, Alisha K A, Reshma P R, Manu Krishna C P, Detection of Diabetic Retinopathy and Glaucoma using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Arya Raj S, R Gopika Krishnan, Drishya Das, Rohith R, Jocelyn Ann Joseph, Personality Profiling Using CV Analysis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ryan Leo , Mathews P Jose, Eirene Nikky , Lloyd Micheal, Chinnu Edwin A , Controlling a Mini Game using a Brain-Computer Interface , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Krishnendu B, Sreelakshmi A, Sumayya Maheen, Zameel Hassan, Honey Joseph, Chatbot-Enabled Symptom Assessment: Revolutionizing Disease Diagnosis and Patient Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr nitha C Vellayudan, Akshay K.P, Muhamed Adhil P.M, C.A Sivasankar , Crop Yield and Price Prediction , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Asha Joseph, Deep Learning for Cyber Threat Detection , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.