Advancements in ECG Heartbeat Classification: A Comprehensive Review of Deep Learning Approaches and Imbalanced Data Solutions
Abstract
This systematic literature review critically examines developments in electrocardiogram (ECG) heartbeat classification, focusing on the utilization of deep learning techniques and addressing challenges associated with imbalanced datasets. Covering articles published between 2012 and 2021, The primary objective is to uncover challenges related to imbalanced data in predicting heart diseases, specifically through the lens of machine learning applications utilizing ECG and patient data. The paper discusses the types of heart diseases, algorithms, applications, and solutions, shedding light on limitations and gaps in current approaches.
Keywords:
ECG Signal Processing, Convolutional Neural Network (CNN), AAMI Standard, MIT-BIH Dataset, INCART Dataset, Deep Learning, R-peak Detection, Electrocardiogram (ECG) Abnormalities, Machine Learning, Medical Signal Processing, RR Time Interval, Explainable AIPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Jyothis Joseph, Angeetha Raju, Aparna Santhosh, Ashitha Jenish, K S Minu, Survey on Fake Profile Detection in Social Media , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nighila Ashok, Adithya Ajith, Aparna Shaju, Arjuna Chandran V V, Fahmi Fathima T S, DeepScan : A Deepfake Video Detection System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- M Sreedharsh, S Saurav, Albin Joseph, Sravan Chandran , Lida K Kuriakose, Childhood Epilepsy Syndrome Classification through a Deep Learning Network with Clinical History Integration , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr.Sinciya P.O, Aaron Varughese Bino, Anamin Fathima Anish, Aathira Krishna, Dona Maria Joseph, Unveiling Stress through Facial Expressions: A Literature Review on Detection Methods , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr nitha C Vellayudan, Akshay K.P, Muhamed Adhil P.M, C.A Sivasankar , Crop Yield and Price Prediction , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ryan Leo , Mathews P Jose, Eirene Nikky , Lloyd Micheal, Chinnu Edwin A , Controlling a Mini Game using a Brain-Computer Interface , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Athira Sankar, Sajishma S R, Alan Raj, Vaishnavi A K, Reshmi S Kaimal, Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.