Stockwise: A survey on stock price prediction models
Abstract
Stock prices are difficult to predict because they can
change a lot and are affected by various factors. People,
especially investors, care a lot about predicting them accurately.
By properly predicting stock prices, it is very useful to those
investors who invest in the stock market to get profit. There are
plenty of machine learning and deep learning models available
for prediction. Some of the models predict very accurately, and
others do not. So, the selection of a prediction model is an
important factor for predicting the stock price. This paper
mainly focuses on comparing different prediction models based
on performance measure.
Keywords:
Stock price, Prediction models, Machine learningPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Layana S Pradeep, Milen Ninan Ittiyeipe, Shahina S, Soumya A S, Ojus Thomas Lee , Gayathri Mohan, A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ryan Leo , Mathews P Jose, Eirene Nikky , Lloyd Micheal, Chinnu Edwin A , Controlling a Mini Game using a Brain-Computer Interface , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Parvathy V A, Irfana Parveen C A, Alisha K A, Reshma P R, Manu Krishna C P, Detection of Diabetic Retinopathy and Glaucoma using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Mekha Jose, Avin Joshy, Abishek R Paleri, Athul Mohan, Ali Jasim R M, A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nighila Ashok, Adithya Ajith, Aparna Shaju, Arjuna Chandran V V, Fahmi Fathima T S, DeepScan : A Deepfake Video Detection System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.