Mediknow - A Malayalam Cancer Question Answering System
Abstract
This paper introduces "MediKnow," a
pioneering Malayalam Question Answering System
designed to address the scarcity of generative answer
works in the realm of healthcare information
accessibility, specifically tailored for cancer-related
queries. The dearth of such systems in Dravidian
languages, particularly Malayalam, has motivated the
development of a robust solution. Leveraging advanced
Natural Language Processing (NLP) techniques,
including OpenAI models and FAISS for efficient vector
storage, MediKnow employs a specialized Malayalam
language model to navigate the intricacies of the
Dravidian linguistic context. The processing pipeline
encompasses document loading, text splitting, and
embeddings, enhancing the system's capacity to
comprehend and accurately respond to a diverse range of
cancer-related questions. This work underscores the
critical need for bridging the gap in generative answer
works for Dravidian languages, highlighting the specific
challenges posed by the Malayalam language due to its
complexity. Beyond providing accessible information,
MediKnow exemplifies the efficacy of employing state-ofthe-art NLP technologies to address linguistic nuances.
The paper evaluates the system's performance on a
dataset of cancer-related questions, demonstrating its
ability to deliver accurate and informative answers. The
innovative approach presented herein contributes to the
advancement of NLP capabilities in non-English
languages, particularly focusing on healthcare-related
information retrieval. The development and deployment
of "MediKnow" signify a significant stride in tackling
linguistic and domain-specific challenges in cancerrelated question answering, ultimately making critical
healthcare information more accessible to Malayalam
speakers.
Keywords:
Natural Language Processing, Question Answering System, Dravidian Languages, Cancer Information, OpenAI, FaissPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Aaron Samuel Mathew, Green Cloud Computing: A Literature Survey , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Sinciya P.O , Ameena Ismail, Christin Abu, Don P Mathew, Gokul Krishnan G , Enhancing LSD Image Classification Techniques A Literature Review on Classification Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Naveen Philip Abraham, Joppen George, Kevin Sajan, Jonathan Chandy, Jonathan Chandy, Bini M. Issac, Advancements in Assistive Technologies: Enhancing Independence and Accessibility for the Visually Impaired , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ann Mary Babu, Anto K Thomas, Aswin Sebastian, Beffin K Lalu, Dr Jacob John, Assistive Technology For Deaf And Dumb , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Richa Maria Biju, Merwin Maria Antony, Mishal Rose Thankachan, Joshua John Sajit, Bini M Issac, Enhancing Image Forgery Detection with Multi-Modal Deep Learning and Statistical Methods , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- P Sathya Narayan, Safad Ismail, Developing an Empathetic Interaction Model for Elderly in Pandemics , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Aron Thomas , Abhinav B Kannanthanam , Elzabeth Bobus , Adhil Salim , Elizabeth Jullu , R Neenu, A Hybrid SQL Query Execution Model for JSON Data: Balancing Resource Efficiency and Analytical Performance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Jyothika Anil, Milan Joseph Mathew, Namitha S Mukkadan, Reshmi Raveendran, Rintu Jose, Driver Drowsiness Detection Using Smartphone Application , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Muneebah Mohyiddeen, Sana T.H, Anoodh Hussain, Nandana P Narayanan, Sneha Soman, DGCURE: Model for Detection of Dysgraphia , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- George P Kurias, Gokul Krishna AU, Jifith Joseph, Sharunmon R, Linsa Mathew, A Review of Methodologies for Detecting Missing and Wanted People Using Machine Learning and Video Surveillance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.