Mediknow - A Malayalam Cancer Question Answering System
Abstract
This paper introduces "MediKnow," a
pioneering Malayalam Question Answering System
designed to address the scarcity of generative answer
works in the realm of healthcare information
accessibility, specifically tailored for cancer-related
queries. The dearth of such systems in Dravidian
languages, particularly Malayalam, has motivated the
development of a robust solution. Leveraging advanced
Natural Language Processing (NLP) techniques,
including OpenAI models and FAISS for efficient vector
storage, MediKnow employs a specialized Malayalam
language model to navigate the intricacies of the
Dravidian linguistic context. The processing pipeline
encompasses document loading, text splitting, and
embeddings, enhancing the system's capacity to
comprehend and accurately respond to a diverse range of
cancer-related questions. This work underscores the
critical need for bridging the gap in generative answer
works for Dravidian languages, highlighting the specific
challenges posed by the Malayalam language due to its
complexity. Beyond providing accessible information,
MediKnow exemplifies the efficacy of employing state-ofthe-art NLP technologies to address linguistic nuances.
The paper evaluates the system's performance on a
dataset of cancer-related questions, demonstrating its
ability to deliver accurate and informative answers. The
innovative approach presented herein contributes to the
advancement of NLP capabilities in non-English
languages, particularly focusing on healthcare-related
information retrieval. The development and deployment
of "MediKnow" signify a significant stride in tackling
linguistic and domain-specific challenges in cancerrelated question answering, ultimately making critical
healthcare information more accessible to Malayalam
speakers.
Keywords:
Natural Language Processing, Question Answering System, Dravidian Languages, Cancer Information, OpenAI, FaissPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- S Adithyakrishnan, U Anjukrishna, Rohith Manuel Philip, P Careena, A Comprehensive Review on Diagnosis and Classification of Various Respiratory Diseases , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- M Manoj, A S Athira, Rishna Ramesh, Sandhra Gopi, Firoz P U, Smart Attend Insights , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr. Indu John, Gauri Santhosh, Jesna Susan Reji, Abdul Musawir, Glady Prince, Detection of Autism Spectrum Disorder in Toddlers using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- George P Kurias, Gokul Krishna AU, Jifith Joseph, Sharunmon R, Linsa Mathew, A Review of Methodologies for Detecting Missing and Wanted People Using Machine Learning and Video Surveillance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Richa Maria Biju, Merwin Maria Antony, Mishal Rose Thankachan, Joshua John Sajit, Bini M Issac, Enhancing Image Forgery Detection with Multi-Modal Deep Learning and Statistical Methods , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Ansamol Varghese, Milu Mary Jacob, Shilpa Mariam James, Reeba Rebecca Varghese, Vimal sajan George, A Review on Integrating IoT and Robotics for Improved Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.