CARDAMOM PLANT DISEASE DETECTION USING ROBOT
Abstract
The cardamom plant has various types of diseases. Among these diseases, leaf blight and leaf spot cause too much damage. Early detection and prevention of these diseases is done with the help of a robot. In this approach, we proceed in several steps. i.e. image collection, image processing, machine learning, image classification and fertilizer design. Cardamom is the queen of spices. It is indigenously grown in the evergreen forests of Karnataka, Kerala, Tamil Nadu and the north-eastern states of India. India is the third largest producer of cardamom. Plant diseases have a disastrous effect on the safety of food production; they reduce the eminence and quantity of agricultural products. Plant diseases can cause significantly high losses or no harvest in severe cases. Various diseases and pests affect the growth of cardamom plants at different stages and crop yields. This study focused on two cardamom plant diseases, Colletotrichum Blight and Phyllosticta Leaf Spot of cardamom and three grape diseases, Black Rot, ESCA and Isariopsis Leaf Spot. Various methods have been proposed to detect plant diseases and deep learning has become the preferred method due to its spectacular success. In this study, U2-Net was used to remove the unwanted background of the input image by selecting multi-scale features. This work proposes an approach for disease detection of cardamom plants using the EfficientNetV2 model. A comprehensive set of experiments was conducted to investigate the performance of the proposed approach and compare it with other models such as EfficientNet and Convolutional Neural Network (CNN).
Keywords:
CNN - Convolutional Neural Network, GLCM - Gray Level Co-occurrence Matrix, Deep Learning, Machine Learning, Soft Computing, Computer Vision, Artifical Intelligence, Artificial Neural NetworkPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Syam Gopi, Evelyn Susan Jacob, Joel John, Raynell Rajeev, Steve Alex, Survey on AI Malware Detection Methods and Cybersecurity Education , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Albin Thomas Lalu, Resmara S, Alen A Thankachen, Sneha Priya Sebastian, Dany Jennez , Lirin Blesson, Kesia Sunny, Fault Detection of Transmission Lines Using Unmanned Aerial Vehicle (UAV) , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Muneebah Mohyiddeen, Sana T.H, Anoodh Hussain, Nandana P Narayanan, Sneha Soman, DGCURE: Model for Detection of Dysgraphia , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ansamol Varghese, Anandhu Anoj, Emil Thomas, Deepta K Sunny, Angel Thomas, TrueNews: AI Powered Detection of Manipulated Text and Images , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anishamol Abraham, Elbin Santhosh, Diliya Saji, Edwin Roy, Catherine Achu Punnoose, AI Revolutionizing Fashion: A Review of Algorithms and Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.