Enhancing Image Forgery Detection with Multi-Modal Deep Learning and Statistical Methods
Abstract
The manipulation of digital images from journalism to social media and in forensics has made detection of image forgery a significant area of research. Techniques for forgery detection are generally classified into three categories: splicing, copy-move, and retouching. The mainstay of the classic methods is handcrafted features which range from resampling artefacts to edge inconsistencies and finally DCT coefficients that point towards anomalies. However, with deep learning, this domain has totally transformed: it is possible to learn complex patterns straight from pixel data to get even more sophisticated detec- tion. Modern approaches rely on convolutional neural networks (CNNs) and prefabricated architectures such as ResNet50 and VGG16 to embrace both global and local inconsistency in images. Hybrid models combining the capabilities from deep learning and statistical methods have also been found to perform better than others. With all these advances, however, several problems still exist. It is challenging to produce subtle forgeries that survive most post-processing procedures, such as compression and resizing. More generalizable models, along with the designs they are intended to build upon, should be developed for the detection of various kinds of forgeries in diverse image datasets and reflect real challenges in diverse real-world scenarios.
Keywords:
hybrid models, handcrafted features, DCT coefficients, VGG16, ResNet50, convolutional neural networks (CNNs), deep learning, copy- move forgery, splicing forgery, Image forgery detectionPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Parvathy V A, Irfana Parveen C A, Alisha K A, Reshma P R, Manu Krishna C P, Detection of Diabetic Retinopathy and Glaucoma using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Mrs. Lis Jose, Akhil Lorence, Akhil Manohar, Amal Jose Chacko, Arjun J, Lung Disease Detection From Chest X-ray Images Using Hybrid Machine Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anishamol Abraham, Elbin Santhosh, Diliya Saji, Edwin Roy, Catherine Achu Punnoose, AI Revolutionizing Fashion: A Review of Algorithms and Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Amal P Varghese, Simy Mary Kurian, Advancements in ECG Heartbeat Classification: A Comprehensive Review of Deep Learning Approaches and Imbalanced Data Solutions , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Jyothis Joseph, Angeetha Raju, Aparna Santhosh, Ashitha Jenish, K S Minu, Survey on Fake Profile Detection in Social Media , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Athulya Anilkumar, Abhinav V V, Aneeta Shajan, Anjana S Nair, Bini M Issac, R Neenu, Image Descriptor For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.