Predictive Maintenance of Machines Using IoT and Machine Learning
Abstract
This paper reviews the development and the advancements which have been made in the intelligent predictive maintenance system, which uses the Internet of Things to improve machine reliability and optimize the management schedules in maintenance. Sensors play a vital role in IoT as it incorporates machines used in terms of monitoring and controlling fundamental machine parameters such as temperature, vibration, and pressure, which provide real-time data analysis. This paper discusses machine learning algorithms, clustering techniques, and other data analysis methods in anomaly detection and the prognosis of potential equipment failures. In these systems, some of the principal stages include data collection; real-time streaming; data preprocessing; and anomaly detection. Further on, the paper addresses some challenges such as integrating sensor data coming from heterogeneous sources, the real-time nature required for their processing, and large industrial-scale scaling. This review states the increased adoption of IoT-driven predictive maintenance and its potential for industrial operations to change. It is really all about reducing downtime in industries and improving efficiency.
Keywords:
Predictive Maintenance, IoT Sensors, Anomaly Detection,, Machine Learning, Industrial IoTPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Albin Thomas Lalu, Resmara S, Alen A Thankachen, Sneha Priya Sebastian, Dany Jennez , Lirin Blesson, Kesia Sunny, Fault Detection of Transmission Lines Using Unmanned Aerial Vehicle (UAV) , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Betzy Babu Thoppil, Anugrah Premachandran, Annapoorna M, Ashwin Mathew Zachariah, Bala Susan Jacob, Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Juby Mathew, Maria Jojo, Neha Ann Samson, Noell Biju Michael, Ron T Alumkal, PulseSync: IoT-Enabled Monitoring and Predictive Analytics for Healthcare , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Leo Jose, Navin Shibu George, Raju, Safa Haroon, Bini M Issac, Wearable Technology for Driver Monitoring and Health Management: A Comprehensive Survey , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Melvin Tom Varghese, Joseph V S, Kevin Chacko, Johns Benny, Tintu Alphonsa Thomas, Crop Recommendation System using Machine Learning and IoT , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Mekha Jose, Avin Joshy, Abishek R Paleri, Athul Mohan, Ali Jasim R M, A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.